NeuroKorzh / app.py
vladyur's picture
Update app.py
833aa0a
raw
history blame
2.91 kB
import transformers
import torch
import tokenizers
import streamlit as st
import re
from PIL import Image
from huggingface_hub import hf_hub_download
@st.cache(hash_funcs={tokenizers.Tokenizer: lambda _: None, tokenizers.AddedToken: lambda _: None, re.Pattern: lambda _: None}, allow_output_mutation=True, suppress_st_warning=True)
def get_model(model_name, model_path):
tokenizer = transformers.GPT2Tokenizer.from_pretrained(model_name)
tokenizer.add_special_tokens({
'eos_token': '[EOS]'
})
model = transformers.GPT2LMHeadModel.from_pretrained(model_name)
model.resize_token_embeddings(len(tokenizer))
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
model.eval()
return model, tokenizer
#@st.cache(hash_funcs={tokenizers.Tokenizer: lambda _: None, tokenizers.AddedToken: lambda _: None, re.Pattern: lambda _: None}, allow_output_mutation=True, suppress_st_warning=True)
def predict(text, model, tokenizer, n_beams=5, temperature=2.5, top_p=0.8, length_of_generated=300):
text += '\n'
input_ids = tokenizer.encode(text, return_tensors="pt")
length_of_prompt = len(input_ids[0])
with torch.no_grad():
out = model.generate(input_ids,
do_sample=True,
num_beams=n_beams,
temperature=temperature,
top_p=top_p,
max_length=length_of_prompt + length_of_generated,
eos_token_id=tokenizer.eos_token_id
)
return list(map(tokenizer.decode, out))[0]
medium_model, medium_tokenizer = get_model('sberbank-ai/rugpt3medium_based_on_gpt2', 'korzh-medium_best_eval_loss.bin')
large_model, large_tokenizer = get_model('sberbank-ai/rugpt3large_based_on_gpt2', 'korzh-large_best_eval_loss.bin')
# st.title("NeuroKorzh")
image = Image.open('korzh.jpg')
st.image(image, caption='NeuroKorzh')
option = st.selectbox('Model to be used', ('medium', 'large'))
st.markdown("\n")
text = st.text_area(label='Starting point for text generation', value='Что делать, Макс?', height=200)
button = st.button('Go')
if button:
#try:
with st.spinner("Generation in progress"):
if option == 'medium':
result = predict(text, medium_model, medium_tokenizer)
elif option == 'large':
result = predict(text, large_model, large_tokenizer)
else:
raise st.error('Error in selectbox')
#st.subheader('Max Korzh:')
#lines = result.split('\n')
#for line in lines:
# st.write(line)
#lines = result.replace('\n', '\n\n')
#st.write(lines)
st.text_area(label='', value=result, height=1200)
#except Exception:
# st.error("Ooooops, something went wrong. Try again please and report to me, tg: @vladyur")