File size: 11,873 Bytes
bb169af
 
 
 
1
2
3
4
5
{"content":"# Copyright 2022 <[email protected]>\n\nimport getpass\nimport telnetlib\n\nuser = input(\"Enter your remote account: \")\npassword = getpass.getpass()\n\naddress_1 = \"132.12.67.81\"\naddress_2 = \"142.12.67.81\"\n\ntn = telnetlib.Telnet(address_1)\n\ntn.read_until(b\"login: \")\ntn.write(user.encode('ascii') + b\"\n\")\nif password:\n    tn.read_until(b\"Password: \")\n    tn.write(password.encode('ascii') + b\"\n\")\n\ntn.write(b\"ls\n\")\ntn.write(b\"exit\n\")\n\nprint(tn.read_all().decode('ascii'))","secrets":"[{\"tag\": \"IP_ADDRESS\", \"value\": \"132.12.67.81\", \"start\": 161, \"end\": 173}, {\"tag\": \"IP_ADDRESS\", \"value\": \"142.12.67.81\", \"start\": 188, \"end\": 200}, {\"tag\": \"EMAIL\", \"value\": \"[email protected]\", \"start\": 18, \"end\": 38}]","has_secrets":true,"number_secrets":3,"new_content":"# Copyright 2022 <[email protected]>\n\nimport getpass\nimport telnetlib\n\nuser = input(\"Enter your remote account: \")\npassword = getpass.getpass()\n\naddress_1 = \"192.168.3.11\"\naddress_2 = \"172.16.31.10\"\n\ntn = telnetlib.Telnet(address_1)\n\ntn.read_until(b\"login: \")\ntn.write(user.encode('ascii') + b\"\n\")\nif password:\n    tn.read_until(b\"Password: \")\n    tn.write(password.encode('ascii') + b\"\n\")\n\ntn.write(b\"ls\n\")\ntn.write(b\"exit\n\")\n\nprint(tn.read_all().decode('ascii'))","modified":true,"references":"# Copyright 2022 <PI:EMAIL:[email protected]_PI>\n\nimport getpass\nimport telnetlib\n\nuser = input(\"Enter your remote account: \")\npassword = getpass.getpass()\n\naddress_1 = \"PI:IP_ADDRESS:192.168.3.11END_PI\"\naddress_2 = \"PI:IP_ADDRESS:172.16.31.10END_PI\"\n\ntn = telnetlib.Telnet(address_1)\n\ntn.read_until(b\"login: \")\ntn.write(user.encode('ascii') + b\"\n\")\nif password:\n    tn.read_until(b\"Password: \")\n    tn.write(password.encode('ascii') + b\"\n\")\n\ntn.write(b\"ls\n\")\ntn.write(b\"exit\n\")\n\nprint(tn.read_all().decode('ascii'))"}
{"content":"'''Generating embeddings with Node2Vec for a graph'''\n\n# Copyright 2022 <[email protected]> or <[email protected]>\n\nimport os\nimport gzip\nimport pickle\nfrom tqdm import tqdm\nimport networkx as nx\nfrom nodevectors import Node2Vec\nimport argparse\nfrom datasets import load_dataset\nfrom huggingface_hub import Repository\n\ndef create_node_embeddings(args):\n    G = nx.read_edgelist(args.path_graph, delimiter=',', create_using=nx.Graph(), nodetype=int)\n    nodes = list(G.nodes())\n    n = G.number_of_nodes()\n    m = G.number_of_edges()\n    \n    print(\"Training Node2vec...\")\n    model = Node2Vec(n_components=args.n_components, \n                walklen=40,\n                epochs=30,\n                threads=os.cpu_count())  \n\n    model.fit(G)\n\n    node_embeddings = dict()\n    for node in tqdm(nodes):\n        node_embeddings[node] = model.predict(node)\n\n    repo = Repository(\n        local_dir=\"dataset\",\n        clone_from=\"loubna\/graph_dataset\",\n        token=True,\n        repo_type=\"dataset\",\n        git_user=\"user\",\n        use_auth_token=\"tk_XKyihy89nl89hgEMOskeTHCRZEkBd7\",\n        git_email=\"[email protected]\"\n    )\n\n    print(\"----- Saving the Embeddings -----\")\n    file = gzip.GzipFile(\"dataset\/node_embeddings.emb\", 'wb')\n    file.write(pickle.dumps(node_embeddings))\n    file.close()\n\n\n\nrepo = Repository(local_dir=\"huggingface-hub\", clone_from=\"https:\/\/huggingface.co\/facebook\/wav2vec2-large-960h-lv60\")\nif __name__ ==\"__main__\":\n    parser = argparse.ArgumentParser()\n    parser.add_argument(\"--path_graph\", type=str, default=\"data\/edgelist.txt\", \n        help=\"Path to the graph edges text file\")\n    parser.add_argument(\"--n_components\", type=int, default=20,\n                        help=\"Size of the embedding\")\n    \n    create_node_embeddings(parser.parse_args())","secrets":"[{\"tag\": \"EMAIL\", \"value\": \"[email protected]\", \"start\": 73, \"end\": 89}, {\"tag\": \"EMAIL\", \"value\": \"[email protected]\", \"start\": 95, \"end\": 112}, {\"tag\": \"EMAIL\", \"value\": \"[email protected]\", \"start\": 1100, \"end\": 1116}, {\"tag\": \"KEY\", \"value\": \"tk_XKyihy89nl89hgEMOskeTHCRZEkBd7\", \"start\": 1045, \"end\": 1078}]","has_secrets":true,"number_secrets":4,"new_content":"'''Generating embeddings with Node2Vec for a graph'''\n\n# Copyright 2022 <[email protected]> or <[email protected]>\n\nimport os\nimport gzip\nimport pickle\nfrom tqdm import tqdm\nimport networkx as nx\nfrom nodevectors import Node2Vec\nimport argparse\nfrom datasets import load_dataset\nfrom huggingface_hub import Repository\n\ndef create_node_embeddings(args):\n    G = nx.read_edgelist(args.path_graph, delimiter=',', create_using=nx.Graph(), nodetype=int)\n    nodes = list(G.nodes())\n    n = G.number_of_nodes()\n    m = G.number_of_edges()\n    \n    print(\"Training Node2vec...\")\n    model = Node2Vec(n_components=args.n_components, \n                walklen=40,\n                epochs=30,\n                threads=os.cpu_count())  \n\n    model.fit(G)\n\n    node_embeddings = dict()\n    for node in tqdm(nodes):\n        node_embeddings[node] = model.predict(node)\n\n    repo = Repository(\n        local_dir=\"dataset\",\n        clone_from=\"loubna\/graph_dataset\",\n        token=True,\n        repo_type=\"dataset\",\n        git_user=\"user\",\n        use_auth_token=\"ngw6fo1pu3tjgnp9jnlp7vnwvfqb9yn7\",\n        git_email=\"[email protected]\"\n    )\n\n    print(\"----- Saving the Embeddings -----\")\n    file = gzip.GzipFile(\"dataset\/node_embeddings.emb\", 'wb')\n    file.write(pickle.dumps(node_embeddings))\n    file.close()\n\n\n\nrepo = Repository(local_dir=\"huggingface-hub\", clone_from=\"https:\/\/huggingface.co\/facebook\/wav2vec2-large-960h-lv60\")\nif __name__ ==\"__main__\":\n    parser = argparse.ArgumentParser()\n    parser.add_argument(\"--path_graph\", type=str, default=\"data\/edgelist.txt\", \n        help=\"Path to the graph edges text file\")\n    parser.add_argument(\"--n_components\", type=int, default=20,\n                        help=\"Size of the embedding\")\n    \n    create_node_embeddings(parser.parse_args())","modified":true,"references":"'''Generating embeddings with Node2Vec for a graph'''\n\n# Copyright 2022 <PI:EMAIL:[email protected]_PI> or <PI:EMAIL:[email protected]_PI>\n\nimport os\nimport gzip\nimport pickle\nfrom tqdm import tqdm\nimport networkx as nx\nfrom nodevectors import Node2Vec\nimport argparse\nfrom datasets import load_dataset\nfrom huggingface_hub import Repository\n\ndef create_node_embeddings(args):\n    G = nx.read_edgelist(args.path_graph, delimiter=',', create_using=nx.Graph(), nodetype=int)\n    nodes = list(G.nodes())\n    n = G.number_of_nodes()\n    m = G.number_of_edges()\n    \n    print(\"Training Node2vec...\")\n    model = Node2Vec(n_components=args.n_components, \n                walklen=40,\n                epochs=30,\n                threads=os.cpu_count())  \n\n    model.fit(G)\n\n    node_embeddings = dict()\n    for node in tqdm(nodes):\n        node_embeddings[node] = model.predict(node)\n\n    repo = Repository(\n        local_dir=\"dataset\",\n        clone_from=\"loubna\/graph_dataset\",\n        token=True,\n        repo_type=\"dataset\",\n        git_user=\"user\",\n        use_auth_token=\"PI:KEY:ngw6fo1pu3tjgnp9jnlp7vnwvfqb9yn7END_PI\",\n        git_email=\"PI:EMAIL:[email protected]_PI\"\n    )\n\n    print(\"----- Saving the Embeddings -----\")\n    file = gzip.GzipFile(\"dataset\/node_embeddings.emb\", 'wb')\n    file.write(pickle.dumps(node_embeddings))\n    file.close()\n\n\n\nrepo = Repository(local_dir=\"huggingface-hub\", clone_from=\"https:\/\/huggingface.co\/facebook\/wav2vec2-large-960h-lv60\")\nif __name__ ==\"__main__\":\n    parser = argparse.ArgumentParser()\n    parser.add_argument(\"--path_graph\", type=str, default=\"data\/edgelist.txt\", \n        help=\"Path to the graph edges text file\")\n    parser.add_argument(\"--n_components\", type=int, default=20,\n                        help=\"Size of the embedding\")\n    \n    create_node_embeddings(parser.parse_args())"}
{"content":"import boto3\nimport os\nimport subprocess\nimport platform\nimport sys\n\nclient = boto3.client(\n    's3',\n    aws_access_key_id=\"AKIAIOSF889BG8BHRDYNN7EXAMPLE\",\n    aws_secret_access_key=\"rt\/YUAmye9BxUBPl89hgEMOTZlmnKYV67H5gJD8\",\n)\n\ndef execute_command(command, args):\n    try:\n        aws_cmd = \"aws\" if platform.system().lower() != \"windows\" else \"aws.cmd\"\n        command_with_args = [aws_cmd, \"cloudformation\", command] + list(args)\n        subprocess.check_call(command_with_args)\n\n    except subprocess.CalledProcessError as e:\n        sys.exit(e.returncode)","secrets":"[{\"tag\": \"KEY\", \"value\": \"rt\/YUAmye9BxUBPl89hgEMOTZlmnKYV67H5gJD8\", \"start\": 184, \"end\": 223}, {\"tag\": \"KEY\", \"value\": \"AKIAIOSF889BG8BHRDYN\", \"start\": 125, \"end\": 145}]","has_secrets":true,"number_secrets":2,"new_content":"import boto3\nimport os\nimport subprocess\nimport platform\nimport sys\n\nclient = boto3.client(\n    's3',\n    aws_access_key_id=\"74t3tndxag9o7h0890bnpfzh4olk2h9xN7EXAMPLE\",\n    aws_secret_access_key=\"kgfhvu9qnh3mr6eel97y6fq2hezzol8z\",\n)\n\ndef execute_command(command, args):\n    try:\n        aws_cmd = \"aws\" if platform.system().lower() != \"windows\" else \"aws.cmd\"\n        command_with_args = [aws_cmd, \"cloudformation\", command] + list(args)\n        subprocess.check_call(command_with_args)\n\n    except subprocess.CalledProcessError as e:\n        sys.exit(e.returncode)","modified":true,"references":"import boto3\nimport os\nimport subprocess\nimport platform\nimport sys\n\nclient = boto3.client(\n    's3',\n    aws_access_key_id=\"PI:KEY:74t3tndxag9o7h0890bnpfzh4olk2h9xEND_PIN7EXAMPLE\",\n    aws_secret_access_key=\"PI:KEY:kgfhvu9qnh3mr6eel97y6fq2hezzol8zEND_PI\",\n)\n\ndef execute_command(command, args):\n    try:\n        aws_cmd = \"aws\" if platform.system().lower() != \"windows\" else \"aws.cmd\"\n        command_with_args = [aws_cmd, \"cloudformation\", command] + list(args)\n        subprocess.check_call(command_with_args)\n\n    except subprocess.CalledProcessError as e:\n        sys.exit(e.returncode)"}
{"content":"import setuptools\n\nwith open(\"README.md\", \"r\", encoding=\"utf-8\") as fh:\n    description = fh.read()\n\nsetuptools.setup(\n    name=\"project\",\n    author=\"maintainer\",\n    author_email=\"[email protected]\",\n    description=\"NLP Project\",\n    long_description=description,\n    long_description_content_type=\"text\/markdown\",\n    url=\"https:\/\/github.com\/projects-testing45\/tree\/main\/nlp-course1\/nlp\/\",\n    python_requires=\">=3.6\",\n)","secrets":"[{\"tag\": \"EMAIL\", \"value\": \"[email protected]\", \"start\": 182, \"end\": 202}]","has_secrets":true,"number_secrets":1,"new_content":"import setuptools\n\nwith open(\"README.md\", \"r\", encoding=\"utf-8\") as fh:\n    description = fh.read()\n\nsetuptools.setup(\n    name=\"project\",\n    author=\"maintainer\",\n    author_email=\"[email protected]\",\n    description=\"NLP Project\",\n    long_description=description,\n    long_description_content_type=\"text\/markdown\",\n    url=\"https:\/\/github.com\/projects-testing45\/tree\/main\/nlp-course1\/nlp\/\",\n    python_requires=\">=3.6\",\n)","modified":true,"references":"import setuptools\n\nwith open(\"README.md\", \"r\", encoding=\"utf-8\") as fh:\n    description = fh.read()\n\nsetuptools.setup(\n    name=\"project\",\n    author=\"maintainer\",\n    author_email=\"PI:EMAIL:[email protected]_PI\",\n    description=\"NLP Project\",\n    long_description=description,\n    long_description_content_type=\"text\/markdown\",\n    url=\"https:\/\/github.com\/projects-testing45\/tree\/main\/nlp-course1\/nlp\/\",\n    python_requires=\">=3.6\",\n)"}