File size: 5,625 Bytes
63456dc
b912268
 
 
 
 
63456dc
b912268
 
8661fa1
b912268
 
63456dc
 
 
 
b912268
 
 
 
63456dc
 
aca0908
b912268
 
 
 
 
 
 
 
 
aca0908
 
 
 
 
 
b912268
63456dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b912268
63456dc
b912268
63456dc
 
 
b912268
63456dc
 
 
 
 
 
b912268
63456dc
 
b912268
63456dc
 
 
 
b912268
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aca0908
b912268
 
 
 
aca0908
 
 
 
 
 
 
b912268
 
 
 
 
 
 
 
 
63456dc
 
 
 
 
 
 
 
 
 
 
 
b912268
 
aca0908
 
 
 
 
 
 
 
 
b912268
 
aca0908
b912268
 
 
 
 
63456dc
 
 
aca0908
63456dc
 
 
 
 
aca0908
63456dc
 
 
 
 
aca0908
63456dc
 
 
 
 
aca0908
63456dc
 
 
 
 
 
aca0908
63456dc
b912268
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
from threading import Thread

import gradio as gr
import spaces
import torch
from transformers import AutoModelForImageTextToText, AutoProcessor
from transformers.generation.streamers import TextIteratorStreamer

BASE_GEMMA_MODEL_ID = "google/gemma-3n-E2B-it"
GEMMA_MODEL_ID = "bilguun/gemma-3n-E2B-it-audio-en-mn"

print("Loading processor and model...")
processor = AutoProcessor.from_pretrained(BASE_GEMMA_MODEL_ID)
model = AutoModelForImageTextToText.from_pretrained(
    GEMMA_MODEL_ID, torch_dtype=torch.bfloat16, device_map="auto"
)

print("Model loaded successfully!")


@spaces.GPU(duration=60)
@torch.inference_mode()
def process_audio(audio_file, prompt_type, custom_prompt, max_tokens):
    if audio_file is None:
        return "Please upload an audio file."

    prompts = {
        "Transcribe": "Transcribe this audio.",
        "Transcribe EN to MN": "Transcribe this audio into English and translate into Mongolian.",
        "Transcribe MN to EN": "Transcribe this audio into Mongolian and translate into English.",
    }

    if prompt_type == "Custom":
        if not custom_prompt.strip():
            return "Please provide a custom prompt."
        selected_prompt = custom_prompt.strip()
    else:
        selected_prompt = prompts[prompt_type]

    messages = [
        {
            "role": "user",
            "content": [
                {"type": "audio", "audio": audio_file},
                {"type": "text", "text": selected_prompt},
            ],
        }
    ]

    input_ids = processor.apply_chat_template(
        messages,
        add_generation_prompt=True,
        tokenize=True,
        return_dict=True,
        return_tensors="pt",
    )

    input_ids = input_ids.to(model.device, dtype=model.dtype)

    streamer = TextIteratorStreamer(
        processor, timeout=30.0, skip_prompt=True, skip_special_tokens=True
    )

    generate_kwargs = dict(
        input_ids,
        streamer=streamer,
        max_new_tokens=max_tokens,
        disable_compile=True,
    )

    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    output = ""
    for delta in streamer:
        output += delta
        yield output


with gr.Blocks(title="Gemma 3n Audio Transcription & Translation") as demo:
    gr.Markdown("# Gemma 3n E2B - English-Mongolian Audio Transcription & Translation")
    gr.Markdown(
        "Upload an audio file and select the processing type to get transcription and/or translation."
    )

    with gr.Row():
        with gr.Column():
            audio_input = gr.Audio(
                label="Audio",
                type="filepath",
                sources=["upload", "microphone"],
                max_length=300,
            )

            prompt_dropdown = gr.Dropdown(
                choices=["Transcribe", "Transcribe EN to MN", "Transcribe MN to EN", "Custom"],
                value="Transcribe",
                label="Prompt Type",
            )

            custom_prompt_input = gr.Textbox(
                label="Custom Prompt",
                placeholder="Enter your custom prompt here...",
                lines=2,
                visible=False,
            )

            process_btn = gr.Button("Process Audio", variant="primary")

        with gr.Column():
            output_text = gr.Textbox(
                label="Generated Output",
                lines=10,
                max_lines=20,
                placeholder="Transcribed text will appear here...",
                show_copy_button=True,
                interactive=False,
            )

    with gr.Row():
        with gr.Accordion("Additional Settings", open=False):
            max_tokens_slider = gr.Slider(
                minimum=16,
                maximum=512,
                value=128,
                step=16,
                label="Max New Tokens",
                info="Maximum number of tokens to generate",
            )

    def update_custom_prompt_visibility(prompt_type):
        return gr.update(visible=prompt_type == "Custom")

    prompt_dropdown.change(
        fn=update_custom_prompt_visibility,
        inputs=prompt_dropdown,
        outputs=custom_prompt_input,
    )

    process_btn.click(
        fn=process_audio,
        inputs=[audio_input, prompt_dropdown, custom_prompt_input, max_tokens_slider],
        outputs=output_text,
    )

    gr.Examples(
        examples=[
            [
                "https://github.com/bilguun0203/gemma3n-audio-mn/raw/refs/heads/main/audio_samples/en1.wav",
                "Transcribe",
                "",
                128,
            ],
            [
                "https://github.com/bilguun0203/gemma3n-audio-mn/raw/refs/heads/main/audio_samples/en3.wav",
                "Transcribe EN to MN",
                "",
                128,
            ],
            [
                "https://github.com/bilguun0203/gemma3n-audio-mn/raw/refs/heads/main/audio_samples/mn2.wav",
                "Transcribe",
                "",
                128,
            ],
            [
                "https://github.com/bilguun0203/gemma3n-audio-mn/raw/refs/heads/main/audio_samples/mn2.wav",
                "Transcribe MN to EN",
                "",
                128,
            ],
        ],
        inputs=[
            audio_input,
            prompt_dropdown,
            custom_prompt_input,
            max_tokens_slider,
        ],
        outputs=output_text,
        fn=process_audio,
        cache_examples=True,
        cache_mode="eager",  # Cache examples eagerly for model warmup
        label="Example Audio Files",
    )

if __name__ == "__main__":
    demo.launch()