Spaces:
Sleeping
Sleeping
File size: 3,811 Bytes
524d0a6 67d85c4 524d0a6 3635259 312d081 67d85c4 3635259 67d85c4 3635259 312d081 3635259 67d85c4 3635259 1efe151 524d0a6 1efe151 524d0a6 3635259 524d0a6 c8db677 3635259 524d0a6 3635259 524d0a6 3635259 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
import streamlit as st
import pandas as pd
import numpy as np
import re
import h5py
import pdfminer
from pdfminer.high_level import extract_text
import pytesseract
from pdf2image import convert_from_path
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from sklearn.preprocessing import LabelEncoder
def cleanResume(resumeText):
resumeText = re.sub('http\S+\s*', ' ', resumeText)
resumeText = re.sub('RT|cc', ' ', resumeText)
resumeText = re.sub('#\S+', '', resumeText)
resumeText = re.sub('@\S+', ' ', resumeText)
resumeText = re.sub('[%s]' % re.escape("""!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~"""), ' ', resumeText)
resumeText = re.sub(r'[^\x00-\x7f]', r' ', resumeText)
resumeText = re.sub('\s+', ' ', resumeText)
return resumeText
def pdf_to_text(file):
text = extract_text(file)
if not text.strip(): # If PDF text extraction fails, use OCR
images = convert_from_path(file)
text = "\n".join([pytesseract.image_to_string(img) for img in images])
return text
import h5py
def fix_h5_model():
with h5py.File("deeprank_model_v2.h5", "r+") as f:
if "model_config" in f.attrs:
model_config = f.attrs["model_config"]
# Ensure model_config is a string before replacing
if isinstance(model_config, bytes):
model_config = model_config.decode("utf-8")
updated_config = model_config.replace('"time_major": false', "")
# Store the updated config back as bytes
f.attrs.modify("model_config", updated_config.encode("utf-8"))
def load_deeprank_model():
fix_h5_model()
return load_model('deeprank_model_v2.h5')
def predict_category(resumes_data, selected_category, max_sequence_length, model, tokenizer, label):
resumes_df = pd.DataFrame(resumes_data)
resumes_text = resumes_df['ResumeText'].values
tokenized_text = tokenizer.texts_to_sequences(resumes_text)
padded_text = pad_sequences(tokenized_text, maxlen=max_sequence_length)
predicted_probs = model.predict(padded_text)
for i, category in enumerate(label.classes_):
resumes_df[category] = predicted_probs[:, i]
resumes_df_sorted = resumes_df.sort_values(by=selected_category, ascending=False)
ranks = [{'Rank': rank + 1, 'FileName': row['FileName']} for rank, (idx, row) in enumerate(resumes_df_sorted.iterrows())]
return ranks
def main():
st.title("Resume Ranking App")
st.write("Upload resumes and select a category to rank them based on their relevance.")
model = load_deeprank_model()
df = pd.read_csv('UpdatedResumeDataSet.csv')
df['cleaned'] = df['Resume'].apply(cleanResume)
label = LabelEncoder()
df['Category'] = label.fit_transform(df['Category'])
text = df['cleaned'].values
tokenizer = Tokenizer()
tokenizer.fit_on_texts(text)
max_sequence_length = 500
uploaded_files = st.file_uploader("Upload Resumes (PDFs)", type=["pdf"], accept_multiple_files=True)
if uploaded_files:
resumes_data = []
for file in uploaded_files:
text = cleanResume(pdf_to_text(file))
resumes_data.append({'ResumeText': text, 'FileName': file.name})
selected_category = st.selectbox("Select a category to rank by", list(label.classes_))
if st.button("Rank Resumes"):
if resumes_data and selected_category:
ranks = predict_category(resumes_data, selected_category, max_sequence_length, model, tokenizer, label)
st.write(pd.DataFrame(ranks))
else:
st.error("Please upload valid resumes and select a valid category.")
if __name__ == '__main__':
main()
|