File size: 3,811 Bytes
524d0a6
67d85c4
 
 
524d0a6
3635259
 
 
 
312d081
67d85c4
 
3635259
67d85c4
 
3635259
 
 
 
 
312d081
3635259
67d85c4
 
3635259
 
 
 
 
 
 
1efe151
 
524d0a6
 
 
 
1efe151
 
 
 
 
 
 
 
 
524d0a6
3635259
524d0a6
c8db677
3635259
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
524d0a6
 
 
3635259
 
 
 
 
 
 
 
 
 
 
524d0a6
 
 
 
 
 
 
 
 
 
 
 
 
 
3635259
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import streamlit as st
import pandas as pd
import numpy as np
import re
import h5py
import pdfminer
from pdfminer.high_level import extract_text
import pytesseract
from pdf2image import convert_from_path
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from sklearn.preprocessing import LabelEncoder

def cleanResume(resumeText):
    resumeText = re.sub('http\S+\s*', ' ', resumeText)
    resumeText = re.sub('RT|cc', ' ', resumeText)
    resumeText = re.sub('#\S+', '', resumeText)
    resumeText = re.sub('@\S+', '  ', resumeText)
    resumeText = re.sub('[%s]' % re.escape("""!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~"""), ' ', resumeText)
    resumeText = re.sub(r'[^\x00-\x7f]', r' ', resumeText)
    resumeText = re.sub('\s+', ' ', resumeText)
    return resumeText

def pdf_to_text(file):
    text = extract_text(file)
    if not text.strip():  # If PDF text extraction fails, use OCR
        images = convert_from_path(file)
        text = "\n".join([pytesseract.image_to_string(img) for img in images])
    return text

import h5py

def fix_h5_model():
    with h5py.File("deeprank_model_v2.h5", "r+") as f:
        if "model_config" in f.attrs:
            model_config = f.attrs["model_config"]

            # Ensure model_config is a string before replacing
            if isinstance(model_config, bytes):
                model_config = model_config.decode("utf-8")

            updated_config = model_config.replace('"time_major": false', "")

            # Store the updated config back as bytes
            f.attrs.modify("model_config", updated_config.encode("utf-8"))

def load_deeprank_model():
    fix_h5_model()
    return load_model('deeprank_model_v2.h5')

def predict_category(resumes_data, selected_category, max_sequence_length, model, tokenizer, label):
    resumes_df = pd.DataFrame(resumes_data)
    resumes_text = resumes_df['ResumeText'].values

    tokenized_text = tokenizer.texts_to_sequences(resumes_text)
    padded_text = pad_sequences(tokenized_text, maxlen=max_sequence_length)

    predicted_probs = model.predict(padded_text)
    for i, category in enumerate(label.classes_):
        resumes_df[category] = predicted_probs[:, i]

    resumes_df_sorted = resumes_df.sort_values(by=selected_category, ascending=False)
    ranks = [{'Rank': rank + 1, 'FileName': row['FileName']} for rank, (idx, row) in enumerate(resumes_df_sorted.iterrows())]
    return ranks

def main():
    st.title("Resume Ranking App")
    st.write("Upload resumes and select a category to rank them based on their relevance.")

    model = load_deeprank_model()
    df = pd.read_csv('UpdatedResumeDataSet.csv')
    df['cleaned'] = df['Resume'].apply(cleanResume)
    label = LabelEncoder()
    df['Category'] = label.fit_transform(df['Category'])
    
    text = df['cleaned'].values
    tokenizer = Tokenizer()
    tokenizer.fit_on_texts(text)
    max_sequence_length = 500

    uploaded_files = st.file_uploader("Upload Resumes (PDFs)", type=["pdf"], accept_multiple_files=True)
    if uploaded_files:
        resumes_data = []
        for file in uploaded_files:
            text = cleanResume(pdf_to_text(file))
            resumes_data.append({'ResumeText': text, 'FileName': file.name})

        selected_category = st.selectbox("Select a category to rank by", list(label.classes_))
        if st.button("Rank Resumes"):
            if resumes_data and selected_category:
                ranks = predict_category(resumes_data, selected_category, max_sequence_length, model, tokenizer, label)
                st.write(pd.DataFrame(ranks))
            else:
                st.error("Please upload valid resumes and select a valid category.")

if __name__ == '__main__':
    main()