Spaces:
Sleeping
Sleeping
File size: 7,228 Bytes
1b3a7eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
import torch
from transformers import GPT2LMHeadModel, GPT2Tokenizer
import gradio as gr
import pandas as pd
from collections import Counter, defaultdict
import os
from huggingface_hub import login
# Get the token from the environment variable
api_token = os.getenv('HF_TOKEN')
# Load pre-trained model and tokenizer
model_name = "gpt2"
model = GPT2LMHeadModel.from_pretrained(model_name)
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
model.eval()
def create_ngrams(tokens, n):
return [tuple(tokens[i:i+n]) for i in range(len(tokens)-n+1)]
def calculate_probabilities(four_gram_counts, three_gram_counts):
probabilities = defaultdict(lambda: defaultdict(float))
for four_gram, count in four_gram_counts.items():
three_gram = four_gram[:-1]
probabilities[three_gram][four_gram[-1]] = count / three_gram_counts[three_gram]
return probabilities
def kneser_ney_smoothing(ngram_counts, lower_order_counts, discount=0.75):
continuation_counts = Counter()
lower_counts = Counter()
for ngram in ngram_counts:
lower_counts[ngram[1:]] += 1
continuation_counts[ngram[1:]] += 1
def continuation_probability(word):
return continuation_counts[word] / sum(continuation_counts.values())
probabilities = defaultdict(lambda: defaultdict(float))
for ngram, count in ngram_counts.items():
lower_ngram = ngram[:-1]
discounted_count = max(count - discount, 0)
lambda_factor = (discount / lower_order_counts[lower_ngram]) * len(continuation_counts)
probabilities[lower_ngram][ngram[-1]] = (discounted_count / lower_order_counts[lower_ngram]) + lambda_factor * continuation_probability(ngram[-1])
return probabilities
def generate_text_with_probs(initial_context, top_p, max_length, top_k):
input_ids = tokenizer.encode(initial_context, return_tensors="pt")
generated_text = initial_context
token_tables = []
with torch.no_grad():
for _ in range(max_length):
outputs = model(input_ids=input_ids)
next_token_logits = outputs.logits[:, -1, :]
# Apply top-p (nucleus) sampling
sorted_logits, sorted_indices = torch.sort(next_token_logits, descending=True)
cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
sorted_indices_to_remove = cumulative_probs > top_p
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
# Convert boolean mask to indices to set logits to -inf
indices_to_remove = sorted_indices[sorted_indices_to_remove]
next_token_logits[:, indices_to_remove] = -float('Inf')
# Compute probabilities
probabilities = torch.softmax(next_token_logits, dim=-1)
# Get the next token using multinomial sampling
next_token = torch.multinomial(probabilities, num_samples=1)
# Get next token and its probability
next_token_prob = probabilities[0, next_token].item()
next_token_text = tokenizer.decode(next_token.item())
# Get top tokens and their probabilities
top_tokens = sorted_indices[0, :top_k] # Get top k tokens
top_probs = probabilities[0, top_tokens]
top_token_probs = [(tokenizer.decode([token.item()]), prob.item()) for token, prob in zip(top_tokens, top_probs)]
# Create DataFrame for current token's top-k probabilities
df = pd.DataFrame(top_token_probs, columns=["Token", "Probability"])
df.index = df.index + 1 # Add numbering to the DataFrame
token_tables.append((f"Next token: {next_token_text} (Probability: {next_token_prob:.4f})", df))
# Add the next token to the input_ids
input_ids = torch.cat([input_ids, next_token], dim=-1)
if next_token.item() == tokenizer.eos_token_id:
break
# Decode the generated text
generated_text = tokenizer.decode(input_ids[0], skip_special_tokens=True)
return generated_text, token_tables
def predict_next_token_ngram(input_text, context_text, max_length):
context_tokens = tokenizer.tokenize(context_text)
four_grams = create_ngrams(context_tokens, 4)
four_gram_counts = Counter(four_grams)
three_gram_counts = Counter([gram[:-1] for gram in four_grams])
probabilities = calculate_probabilities(four_gram_counts, three_gram_counts)
probs = kneser_ney_smoothing(four_gram_counts, three_gram_counts)
input_tokens = tokenizer.tokenize(input_text)
generated_text = input_text
token_tables = []
if len(input_tokens) >= max_length:
generated_text = tokenizer.convert_tokens_to_string(input_tokens)
return generated_text, token_tables
while len(input_tokens) < max_length:
input_3_gram = tuple(input_tokens[-3:])
next_token_probs = probs.get(input_3_gram, {})
if not next_token_probs:
break
next_token = max(next_token_probs, key=next_token_probs.get)
input_tokens.append(next_token)
# Get top tokens and their probabilities
top_k = 4
top_k_tokens = sorted(next_token_probs.items(), key=lambda x: x[1], reverse=True)[:top_k]
top_k_tokens_df = pd.DataFrame(top_k_tokens, columns=["Token", "Probability"])
top_k_tokens_df.index = top_k_tokens_df.index + 1 # Add numbering to the DataFrame
top_k_tokens_df["Token"] = top_k_tokens_df["Token"].apply(lambda x: tokenizer.convert_tokens_to_string([x]))
token_tables.append((f"Next token: {next_token} (Predicted)", top_k_tokens_df))
generated_text = tokenizer.convert_tokens_to_string(input_tokens)
return generated_text, token_tables
def combined_model_predictions(context_text, initial_context, top_p, max_length, top_k):
generated_text, token_tables = generate_text_with_probs(initial_context, top_p, max_length, top_k)
ngram_generated_text, ngram_token_tables = predict_next_token_ngram(initial_context, context_text, max_length)
return generated_text, token_tables, ngram_generated_text, ngram_token_tables
iface = gr.Interface(
fn=combined_model_predictions,
inputs=[
gr.Textbox(lines=4, placeholder="Enter context for N-gram model..."),
gr.Textbox(lines=2, placeholder="Enter initial context here..."),
gr.Slider(0, 1, step=0.01, value=0.9, label="Top-p (nucleus) sampling"),
gr.Slider(1, 100, step=1, value=50, label="Max length"),
gr.Slider(1, 50, step=1, value=10, label="Top-k"), # Added Top-k slider
],
outputs=[
gr.Textbox(label="Generated Text"),
gr.Dataframe(label="LLM Token Probabilities"), # Display DataFrame as output
gr.Textbox(label="N-gram Generated Text"),
gr.Dataframe(label="N-gram Token Predictions"), # Display N-gram model predictions
],
title="Next Token Visualizer (GPT-2 - 124M param.)",
description="Generate text using GPT-2 with top-p (nucleus) sampling and see the probabilities of generated tokens in tables, along with N-gram model predictions.",
)
# Launch the Gradio app
iface.launch() |