File size: 7,228 Bytes
1b3a7eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import torch
from transformers import GPT2LMHeadModel, GPT2Tokenizer
import gradio as gr
import pandas as pd
from collections import Counter, defaultdict
import os
from huggingface_hub import login

# Get the token from the environment variable
api_token = os.getenv('HF_TOKEN')

# Load pre-trained model and tokenizer
model_name = "gpt2"
model = GPT2LMHeadModel.from_pretrained(model_name)
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
model.eval()

def create_ngrams(tokens, n):
    return [tuple(tokens[i:i+n]) for i in range(len(tokens)-n+1)]

def calculate_probabilities(four_gram_counts, three_gram_counts):
    probabilities = defaultdict(lambda: defaultdict(float))
    for four_gram, count in four_gram_counts.items():
        three_gram = four_gram[:-1]
        probabilities[three_gram][four_gram[-1]] = count / three_gram_counts[three_gram]
    return probabilities

def kneser_ney_smoothing(ngram_counts, lower_order_counts, discount=0.75):
    continuation_counts = Counter()
    lower_counts = Counter()

    for ngram in ngram_counts:
        lower_counts[ngram[1:]] += 1
        continuation_counts[ngram[1:]] += 1

    def continuation_probability(word):
        return continuation_counts[word] / sum(continuation_counts.values())

    probabilities = defaultdict(lambda: defaultdict(float))
    for ngram, count in ngram_counts.items():
        lower_ngram = ngram[:-1]
        discounted_count = max(count - discount, 0)
        lambda_factor = (discount / lower_order_counts[lower_ngram]) * len(continuation_counts)
        probabilities[lower_ngram][ngram[-1]] = (discounted_count / lower_order_counts[lower_ngram]) + lambda_factor * continuation_probability(ngram[-1])

    return probabilities

def generate_text_with_probs(initial_context, top_p, max_length, top_k):
    input_ids = tokenizer.encode(initial_context, return_tensors="pt")
    generated_text = initial_context
    token_tables = []

    with torch.no_grad():
        for _ in range(max_length):
            outputs = model(input_ids=input_ids)
            next_token_logits = outputs.logits[:, -1, :]

            # Apply top-p (nucleus) sampling
            sorted_logits, sorted_indices = torch.sort(next_token_logits, descending=True)
            cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
            sorted_indices_to_remove = cumulative_probs > top_p
            sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
            sorted_indices_to_remove[..., 0] = 0

            # Convert boolean mask to indices to set logits to -inf
            indices_to_remove = sorted_indices[sorted_indices_to_remove]
            next_token_logits[:, indices_to_remove] = -float('Inf')

            # Compute probabilities
            probabilities = torch.softmax(next_token_logits, dim=-1)

            # Get the next token using multinomial sampling
            next_token = torch.multinomial(probabilities, num_samples=1)

            # Get next token and its probability
            next_token_prob = probabilities[0, next_token].item()
            next_token_text = tokenizer.decode(next_token.item())

            # Get top tokens and their probabilities
            top_tokens = sorted_indices[0, :top_k]  # Get top k tokens
            top_probs = probabilities[0, top_tokens]
            top_token_probs = [(tokenizer.decode([token.item()]), prob.item()) for token, prob in zip(top_tokens, top_probs)]

            # Create DataFrame for current token's top-k probabilities
            df = pd.DataFrame(top_token_probs, columns=["Token", "Probability"])
            df.index = df.index + 1  # Add numbering to the DataFrame
            token_tables.append((f"Next token: {next_token_text} (Probability: {next_token_prob:.4f})", df))

            # Add the next token to the input_ids
            input_ids = torch.cat([input_ids, next_token], dim=-1)

            if next_token.item() == tokenizer.eos_token_id:
                break

    # Decode the generated text
    generated_text = tokenizer.decode(input_ids[0], skip_special_tokens=True)

    return generated_text, token_tables

def predict_next_token_ngram(input_text, context_text, max_length):
    context_tokens = tokenizer.tokenize(context_text)
    four_grams = create_ngrams(context_tokens, 4)
    four_gram_counts = Counter(four_grams)
    three_gram_counts = Counter([gram[:-1] for gram in four_grams])
    probabilities = calculate_probabilities(four_gram_counts, three_gram_counts)
    probs = kneser_ney_smoothing(four_gram_counts, three_gram_counts)

    input_tokens = tokenizer.tokenize(input_text)
    generated_text = input_text
    token_tables = []

    if len(input_tokens) >= max_length:
        generated_text = tokenizer.convert_tokens_to_string(input_tokens)
        return generated_text, token_tables

    while len(input_tokens) < max_length:
        input_3_gram = tuple(input_tokens[-3:])
        next_token_probs = probs.get(input_3_gram, {})
        if not next_token_probs:
            break
        next_token = max(next_token_probs, key=next_token_probs.get)
        input_tokens.append(next_token)

        # Get top tokens and their probabilities
        top_k = 4
        top_k_tokens = sorted(next_token_probs.items(), key=lambda x: x[1], reverse=True)[:top_k]
        top_k_tokens_df = pd.DataFrame(top_k_tokens, columns=["Token", "Probability"])
        top_k_tokens_df.index = top_k_tokens_df.index + 1  # Add numbering to the DataFrame
        top_k_tokens_df["Token"] = top_k_tokens_df["Token"].apply(lambda x: tokenizer.convert_tokens_to_string([x]))

        token_tables.append((f"Next token: {next_token} (Predicted)", top_k_tokens_df))

    generated_text = tokenizer.convert_tokens_to_string(input_tokens)
    return generated_text, token_tables

def combined_model_predictions(context_text, initial_context, top_p, max_length, top_k):
    generated_text, token_tables = generate_text_with_probs(initial_context, top_p, max_length, top_k)
    ngram_generated_text, ngram_token_tables = predict_next_token_ngram(initial_context, context_text, max_length)

    return generated_text, token_tables, ngram_generated_text, ngram_token_tables

iface = gr.Interface(
    fn=combined_model_predictions,
    inputs=[
        gr.Textbox(lines=4, placeholder="Enter context for N-gram model..."),
        gr.Textbox(lines=2, placeholder="Enter initial context here..."),
        gr.Slider(0, 1, step=0.01, value=0.9, label="Top-p (nucleus) sampling"),
        gr.Slider(1, 100, step=1, value=50, label="Max length"),
        gr.Slider(1, 50, step=1, value=10, label="Top-k"),  # Added Top-k slider
    ],
    outputs=[
        gr.Textbox(label="Generated Text"),
        gr.Dataframe(label="LLM Token Probabilities"),  # Display DataFrame as output
        gr.Textbox(label="N-gram Generated Text"),
        gr.Dataframe(label="N-gram Token Predictions"),  # Display N-gram model predictions
    ],
    title="Next Token Visualizer (GPT-2 - 124M param.)",
    description="Generate text using GPT-2 with top-p (nucleus) sampling and see the probabilities of generated tokens in tables, along with N-gram model predictions.",
)

# Launch the Gradio app
iface.launch()