Jeet Paul commited on
Commit
c840fe5
·
1 Parent(s): 4442a03

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +87 -0
app.py ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from tika import parser
3
+ import pandas as pd
4
+ from sklearn.preprocessing import LabelEncoder
5
+ from sklearn.feature_extraction.text import TfidfVectorizer
6
+ from sklearn.multiclass import OneVsRestClassifier
7
+ from sklearn.neighbors import KNeighborsClassifier
8
+ import re
9
+ import pickle
10
+
11
+ def cleanResume(resumeText):
12
+ # Your existing cleanResume function remains unchanged
13
+ resumeText = re.sub('http\S+\s*', ' ', resumeText)
14
+ resumeText = re.sub('RT|cc', ' ', resumeText)
15
+ resumeText = re.sub('#\S+', '', resumeText)
16
+ resumeText = re.sub('@\S+', ' ', resumeText)
17
+ resumeText = re.sub('[%s]' % re.escape("""!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~"""), ' ', resumeText)
18
+ resumeText = re.sub(r'[^\x00-\x7f]',r' ', resumeText)
19
+ resumeText = re.sub('\s+', ' ', resumeText)
20
+ return resumeText
21
+
22
+ df = pd.read_csv('UpdatedResumeDataSet.csv')
23
+ df['cleaned'] = df['Resume'].apply(lambda x: cleanResume(x))
24
+ label = LabelEncoder()
25
+ df['Category'] = label.fit_transform(df['Category'])
26
+ text = df['cleaned'].values
27
+ target = df['Category'].values
28
+ word_vectorizer = TfidfVectorizer(
29
+ sublinear_tf=True,
30
+ stop_words='english',
31
+ max_features=1500)
32
+ word_vectorizer.fit(text)
33
+ WordFeatures = word_vectorizer.transform(text)
34
+ model = OneVsRestClassifier(KNeighborsClassifier())
35
+ model.fit(WordFeatures, target)
36
+
37
+ def pdf_to_text(file):
38
+ # Use tika to extract text from the PDF file
39
+ file_data = parser.from_buffer(file.read())
40
+ text = file_data['content']
41
+ return text
42
+
43
+ def predict_category(resumes_data, selected_category):
44
+ resumes_df = pd.DataFrame(resumes_data)
45
+ resumes_features = word_vectorizer.transform(resumes_df['ResumeText'])
46
+ predicted_probs = model.predict_proba(resumes_features)
47
+
48
+ # Assign probabilities to respective job categories
49
+ for i, category in enumerate(label.classes_):
50
+ resumes_df[category] = predicted_probs[:, i]
51
+
52
+ resumes_df_sorted = resumes_df.sort_values(by=selected_category, ascending=False)
53
+
54
+ # Get the ranks for the selected category
55
+ ranks = []
56
+ for rank, (idx, row) in enumerate(resumes_df_sorted.iterrows()):
57
+ rank = rank + 1
58
+ file_name = row['FileName']
59
+ ranks.append({'Rank': rank, 'FileName': file_name})
60
+
61
+ return ranks
62
+
63
+ def main():
64
+ st.title("Resume Ranking App")
65
+ st.text("Upload resumes and select a category to rank them.")
66
+
67
+ resumes_data = []
68
+ selected_category = ""
69
+
70
+ # Handle multiple file uploads
71
+ files = st.file_uploader("Upload resumes", type=["pdf"], accept_multiple_files=True)
72
+ if files:
73
+ for file in files:
74
+ text = cleanResume(pdf_to_text(file))
75
+ resumes_data.append({'ResumeText': text, 'FileName': file.name})
76
+
77
+ selected_category = st.selectbox("Select a category to rank by", label.classes_)
78
+
79
+ if st.button("Rank Resumes"):
80
+ if not resumes_data or not selected_category:
81
+ st.warning("Please upload resumes and select a category to continue.")
82
+ else:
83
+ ranks = predict_category(resumes_data, selected_category)
84
+ st.write(pd.DataFrame(ranks))
85
+
86
+ if __name__ == '__main__':
87
+ main()