Spaces:
Sleeping
Sleeping
File size: 1,593 Bytes
b6ed202 0d46d77 b6ed202 67becf0 b6ed202 67becf0 b6ed202 bb019c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
import pandas as pd
import numpy as np
import json
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.models import load_model
import streamlit as st
with open("tokenizer_cnnlstm.json", 'r') as tokenizer_file:
word_index = json.load(tokenizer_file)
tokenizer = Tokenizer(num_words=100000)
tokenizer.word_index = word_index
model = load_model("model2.h5")
classes = ['ADHD', 'OCD', 'Aspergers', 'Depression', 'PTSD']
st.markdown("## Mental Health Prediction π - **Beta**")
st.divider()
text = st.text_area("Enter transcript:", height=200)
if st.button("Predict"):
sequence = tokenizer.texts_to_sequences([text])
sequence = pad_sequences(sequence, maxlen=100)
prediction = model.predict(sequence)
predicted_class = classes[np.argmax(prediction)]
st.write("**π I think you're talking about:**", predicted_class)
prediction_flat = prediction.flatten()
data = pd.DataFrame({
'Category': classes,
'Values': prediction_flat})
st.bar_chart(data.set_index('Category'))
st.divider()
st.markdown("### π Please give a context length of atleast 100 words for the best results")
st.markdown("## Disclaimer:")
st.markdown("""This model is not a substitute for professional medical advice. The predictions made by this model are based on a sample dataset and may not be accurate for all individuals. If you are concerned about your mental health, please
consult witha qualified healthcare professional.""")
|