File size: 27,498 Bytes
cb481ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 |
from typing import Any, Callable, Optional, Union
from collections import defaultdict
import re
import profiling_decorator
import datasets
import torch
import torch.utils.data
import transformers
from accelerate.utils import broadcast_object_list, gather, gather_object, is_peft_model, set_seed
from datasets import Dataset, IterableDataset
from packaging import version
from torch import nn
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.utils.data import DataLoader, Sampler
from transformers import (
AutoModelForCausalLM,
AutoModelForSequenceClassification,
AutoTokenizer,
GenerationConfig,
PreTrainedModel,
PreTrainedTokenizerBase,
Trainer,
TrainerCallback,
is_wandb_available,
PreTrainedTokenizer,
)
class ReToolTrainer(Trainer): # Change this line
def __init__(
self,
model: Optional[PreTrainedModel] = None,
processing_class: Optional[PreTrainedTokenizerBase] = None,
args: Optional[transformers.TrainingArguments] = None,
reward_funcs: Optional[list[Callable]] = None,
train_dataset: Optional[Dataset] = None,
eval_dataset: Optional[Dataset] = None,
# ReTool specific parameters - same as before
eos_id: Optional[int] = None,
interpreter_id: Optional[list[int]] = None,
code_id: Optional[list[int]] = None,
max_turns: int = 10,
max_completion_length: int = 1024,
temperature: float = 0.7,
top_p: float = 0.9,
top_k: int = 50,
min_p: Optional[float] = None,
mask_truncated_completions: bool = True,
**kwargs
):
# Initialize parent Trainer (simpler call)
super().__init__(
model=model,
tokenizer=processing_class, # Note: Trainer uses 'tokenizer', not 'processing_class'
args=args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
**kwargs
)
# Store processing_class for compatibility
self.processing_class = processing_class or self.tokenizer
# Add reward function handling (since Trainer doesn't have this)
self.reward_funcs = reward_funcs or [self._binary_reward_function]
# Rest of the ReTool-specific code stays exactly the same!
self.eos_id = eos_id or self.processing_class.eos_token_id
# ReTool specific attributes
self.eos_id = eos_id or self.processing_class.eos_token_id
self.interpreter_id = interpreter_id or self._get_interpreter_token_ids()
self.code_id = code_id or self._get_code_token_ids()
self.max_turns = max_turns
self.max_completion_length = max_completion_length
self.temperature = temperature
self.top_p = top_p
self.top_k = top_k
self.min_p = min_p
self.mask_truncated_completions = mask_truncated_completions
# ReTool specific logging
self.reward_func_names = ["binary_correctness"]
self._metrics = {"train": defaultdict(list), "eval": defaultdict(list)}
self._textual_logs = {
"prompt": [],
"completion": [],
"rewards": {"binary_correctness": []}
}
# Generation configuration for ReTool
self.generation_config = GenerationConfig(
max_new_tokens=50, # Per turn, not total
do_sample=True,
pad_token_id=self.processing_class.pad_token_id,
bos_token_id=self.processing_class.bos_token_id,
eos_token_id=[self.eos_id, self.code_id[1]], # Stop on EOS or </code>
temperature=self.temperature,
top_p=self.top_p,
top_k=self.top_k,
min_p=self.min_p,
return_dict_in_generate=True,
use_cache=True,
)
def _get_interpreter_token_ids(self) -> list[int]:
"""Get token IDs for <interpreter> and </interpreter> tags."""
start_token = self.processing_class.encode("<interpreter>", add_special_tokens=False)[0]
end_token = self.processing_class.encode("</interpreter>", add_special_tokens=False)[0]
return [start_token, end_token]
def _get_code_token_ids(self) -> list[int]:
"""Get token IDs for <code> and </code> tags."""
start_token = self.processing_class.encode("<code>", add_special_tokens=False)[0]
end_token = self.processing_class.encode("</code>", add_special_tokens=False)[0]
return [start_token, end_token]
def _binary_reward_function(self, prompts, completions, **kwargs) -> list[float]:
"""Default binary reward function for mathematical correctness."""
rewards = []
ground_truths = kwargs.get('ground_truths', [None] * len(completions))
for completion, ground_truth in zip(completions, ground_truths):
if self._is_correct_answer(completion, ground_truth):
rewards.append(1.0)
else:
rewards.append(-1.0)
return rewards
def _execute_code(self, code_block: str) -> str:
"""
Execute code in a sandbox environment.
TODO: Implement actual code execution sandbox.
For now, returns a placeholder.
"""
# Placeholder implementation
return f"Executed: {code_block[:50]}... -> Result: 42"
def _check_equivalence(self, predicted, ground_truth):
"""Simple equivalence check - you can make this more sophisticated later."""
# Simple string comparison for now
return str(predicted).strip() == str(ground_truth).strip()
def _is_correct_answer(self, completion_text, ground_truth):
import re
# Look for boxed answer
match = re.search(r'\\boxed\{([^}]+)\}', completion_text)
if match:
predicted = match.group(1)
return self._check_equivalence(predicted, ground_truth)
return False
def _compute_rewards_and_advantages(self, completions_text, ground_truths, device):
"""Simplified reward and advantage computation for ReTool."""
# Compute binary rewards
rewards = []
for completion_text, ground_truth in zip(completions_text, ground_truths):
if self._is_correct_answer(completion_text, ground_truth):
rewards.append(1.0)
else:
rewards.append(-1.0)
# For now: advantages = rewards (skip group normalization)
advantages = torch.tensor(rewards, dtype=torch.float32, device=device)
return advantages
def _retool_generate_with_interpreter(
self,
prompt_ids_batch: torch.Tensor, # Full batch of prompts
attention_mask_batch: torch.Tensor, # Full batch of attention masks for prompts
#tokenizer: PreTrainedTokenizer, # use self.processiing_class for Tokenizer
eos_id: int, # True end-of-sequence token ID
interpreter_id: list[int], # [start_id, end_id]
code_id: list[int], # [start_id, end_id]
max_turns: int = 10
) -> tuple[torch.LongTensor, list[list[tuple[int, int]]]]:
batch_size = prompt_ids_batch.size(0)
batch_completion = []
batch_interpreter_positions = []
for i in range(batch_size): # Process each item in the batch
# --- Initialization for the current sequence ---
current_input_id = prompt_ids_batch[i:i+1] # Initial input is the prompt
current_attention_mask = attention_mask_batch[i:i+1]
current_kv = None
# NEW: Track only the completion part (no prompt)
cumulative_completion_ids = torch.empty((1, 0), dtype=torch.long, device=prompt_ids_batch.device)
interpreter_positions = []
for turn_idx in range(max_turns):
# --- Stage 1: LM generates text ---
model_outputs = self.model.generate(
input_ids=current_input_id,
attention_mask=current_attention_mask, # This mask is for (history in KV cache + current_input_id)
eos_token_id=[eos_id, code_id[1]], # code_id[1] is assumed to be </code>'s last token ID
past_key_values=current_kv,
generation_config=self.generation_config, # Ensure this has return_dict_in_generate=True, use_cache=True
# max_new_tokens should be set in self.generation_config appropriately for a segment
)
# Update current_full_ids to the new complete sequence
current_full_ids = model_outputs.sequences
# Newly generated tokens by the LM in THIS step
completion_id = current_full_ids[:, current_input_id.size(1):]
# Add to completion tracking (excludes prompt)
cumulative_completion_ids = torch.cat([cumulative_completion_ids, completion_id], dim=1)
# Update current_input_id for the next generation step
# Update current_attention_mask: it was for (history + current_input_id),
# now append 1s for completion_id
current_attention_mask = torch.cat([
current_attention_mask,
torch.ones_like(completion_id)
], dim=1)
current_kv = model_outputs.past_key_values # Cache for the new current_full_ids
last_token_id = current_full_ids[0, -1].item()
if last_token_id == eos_id or turn_idx == max_turns - 1:
batch_completion.append(cumulative_completion_ids.squeeze(0))
batch_interpreter_positions.append(interpreter_positions) # Note: was batch_interpreter_positions[i] = ...
break
if last_token_id == code_id[1]: # Assuming code_id[1] is the specific ID for </code> last token
# --- Stage 2: Tool Execution ---
# Extract code from the generated sequence
full_text = self.processing_class.decode(current_full_ids[0])
code_match = re.search(r'<code>(.*?)</code>', full_text, re.DOTALL)
if code_match:
code_block = code_match.group(1)
interpreter_text = self._execute_code(code_block) # π To do: code sandbox execution π
else:
interpreter_text = "Error: No code found"
formatted_feedback_text = f"{self.processing_class.decode(interpreter_id[0])}{interpreter_text}{self.processing_class.decode(interpreter_id[1])}"
interpreter_feedback_id = self.processing_class(
formatted_feedback_text,
return_tensors="pt",
add_special_tokens=False
).input_ids.to(current_full_ids.device)
# Record positions relative to cumulative_completion_ids *before* appending feedback
interpreter_start_idx = cumulative_completion_ids.size(1)
cumulative_completion_ids = torch.cat([cumulative_completion_ids, interpreter_feedback_id], dim=1) # Use cumulative, not current
interpreter_end_idx = cumulative_completion_ids.size(1) - 1
interpreter_positions.append((interpreter_start_idx, interpreter_end_idx))
# Update attention mask for the appended tool feedback
current_attention_mask = torch.cat([
current_attention_mask,
torch.ones_like(interpreter_feedback_id)
], dim=1)
# Prepare for the next LM generation step:
# The model needs to "process" the tool_output_tokens to update its KV cache.
# The `current_input_id` for the next generate call will be `interpreter_feedback_id`.
# `current_kv` already holds the cache for `current_full_ids` *before* the tool feedback was appended.
# The `current_attention_mask` now correctly covers `current_full_ids` (which includes tool feedback).
current_input_id = interpreter_feedback_id
# `current_kv` is correct (it's for the prefix before `interpreter_feedback_id`).
# The next `model.generate` call will use this `current_input_id`, `current_attention_mask`, and `current_kv`.
else:
# LM stopped for a reason other than EOS or code_end` (e.g., max_new_tokens for the segment)
batch_completion.append(cumulative_completion_ids.squeeze(0))
batch_interpreter_positions.append(interpreter_positions)
# At the end, return full sequence (prompt + completion)
break
else: # Executed if the loop finished due to max_turns without a break
batch_completion.append(cumulative_completion_ids.squeeze(0))
batch_interpreter_positions.append(interpreter_positions)
# Pad sequences in the batch to the same length for returning a single tensor
# This is a common step if you started with a batch loop.
# Alternatively, this function could return a list of tensors if lengths vary.
# For now, assuming you'll handle batch padding outside or return a list.
# The return type `torch.LongTensor` implies a padded batch.
padded_sequences = torch.nn.utils.rnn.pad_sequence(batch_completion, batch_first=True, padding_value=self.processing_class.pad_token_id)
return padded_sequences, batch_interpreter_positions
def _create_interpreter_mask(
self,
completion_ids: torch.Tensor,
interpreter_positions: list[list[tuple[int, int]]]
) -> torch.Tensor:
"""
Create interpreter mask from positions.
Args:
completion_ids: Tensor of shape (batch_size, seq_length)
interpreter_positions: List[List[Tuple[start_idx, end_idx]]]
- Indices are relative to completion_ids
- start_idx: inclusive, end_idx: INCLUSIVE (unlike typical Python slicing)
Returns:
interpreter_mask: Tensor of shape (batch_size, seq_length)
1 = model-generated token, 0 = interpreter token
"""
batch_size, seq_length = completion_ids.shape
# Initialize mask with all 1s (assume all tokens are model-generated)
interpreter_mask = torch.ones(batch_size, seq_length, dtype=torch.float, device=completion_ids.device)
# For each sequence in the batch
for batch_idx, positions_in_sequence in enumerate(interpreter_positions):
# For each interpreter section in this sequence
for start_idx, end_idx in positions_in_sequence:
# Clamp indices to valid range
start_idx = max(0, min(start_idx, seq_length - 1))
end_idx = max(0, min(end_idx, seq_length - 1))
# Zero out interpreter tokens (BOTH start and end inclusive)
if start_idx <= end_idx: # Changed from < to <=
interpreter_mask[batch_idx, start_idx:end_idx + 1] = 0 # Changed to end_idx + 1
return interpreter_mask
def _generate_and_score_completions(
self, inputs: list[dict[str, Union[torch.Tensor, Any]]]
) -> dict[str, Union[torch.Tensor, Any]]:
device = self.accelerator.device
mode = "train" if self.model.training else "eval"
prompts = [x["prompt"] for x in inputs]
prompts_text = [maybe_apply_chat_template(example, self.processing_class)["prompt"] for example in inputs]
prompt_inputs = self.processing_class(
text=prompts_text, return_tensors="pt", padding=True, padding_side="left", add_special_tokens=False
)
prompt_inputs = super()._prepare_inputs(prompt_inputs)
prompt_ids, prompt_mask = prompt_inputs["input_ids"], prompt_inputs["attention_mask"]
if self.max_prompt_length is not None:
prompt_ids = prompt_ids[:, -self.max_prompt_length :]
prompt_mask = prompt_mask[:, -self.max_prompt_length :]
# use custom multi-turn-w-tool-use Generate completions
completion_ids, interpreter_positions = self._retool_generate_with_interpreter(
prompt_ids, attention_mask=prompt_mask, generation_config=self.generation_config,
eos_id = self.eos_id, interpreter_id = self.interpreter_id, code_id = self.code_id
)
# Mask everything after the first EOS token
is_eos = completion_ids == self.processing_class.eos_token_id
eos_idx = torch.full((is_eos.size(0),), is_eos.size(1), dtype=torch.long, device=device)
eos_idx[is_eos.any(dim=1)] = is_eos.int().argmax(dim=1)[is_eos.any(dim=1)]
sequence_indices = torch.arange(is_eos.size(1), device=device).expand(is_eos.size(0), -1)
completion_mask = (sequence_indices <= eos_idx.unsqueeze(1)).int()
# compute interpreter mask
interpreter_mask = self._create_interpreter_mask(completion_ids, interpreter_positions)
# If mask_truncated_completions is enabled, zero out truncated completions in completion_mask
if self.mask_truncated_completions:
truncated_completions = ~is_eos.any(dim=1)
completion_mask = completion_mask * (~truncated_completions).unsqueeze(1).int()
# Concatenate prompt_mask with completion_mask for logit computation
attention_mask = torch.cat([prompt_mask, completion_mask], dim=1) # (B, P+C)
# no need to return old_per_token_logps
# Extract ground truths from inputs
ground_truths = [x.get("answer") for x in inputs] # Adjust key name as needed
# Decode completions for reward computation
completions_text = self.processing_class.batch_decode(completion_ids, skip_special_tokens=True)
# Compute rewards and advantages
advantages = self._compute_rewards_and_advantages(
completions_text,
ground_truths,
device=device
)
# Log the metrics
if mode == "train":
self.state.num_input_tokens_seen += attention_mask.sum().item() # Skip gather
self._metrics[mode]["num_tokens"] = [self.state.num_input_tokens_seen]
# Log completion lengths
completion_lengths = completion_mask.sum(1) # Skip gather
self._metrics[mode]["completions/mean_length"].append(completion_lengths.float().mean().item())
self._metrics[mode]["completions/min_length"].append(completion_lengths.float().min().item())
self._metrics[mode]["completions/max_length"].append(completion_lengths.float().max().item())
# Log terminated sequences
terminated_with_eos = is_eos.any(dim=1) # Skip gather
term_completion_lengths = completion_lengths[terminated_with_eos]
clipped_completions_ratio = 1 - len(term_completion_lengths) / len(completion_lengths)
self._metrics[mode]["completions/clipped_ratio"].append(clipped_completions_ratio)
if len(term_completion_lengths) == 0:
term_completion_lengths = torch.zeros(1, device=device)
self._metrics[mode]["completions/mean_terminated_length"].append(term_completion_lengths.float().mean().item())
# Log rewards (simplified for single reward function)
advantages_tensor = advantages
self._metrics[mode]["rewards/binary_correctness/mean"].append(advantages_tensor.mean().item())
self._metrics[mode]["rewards/binary_correctness/std"].append(advantages_tensor.std().item())
# Log texts for debugging
self._textual_logs["prompt"].extend(prompts_text)
self._textual_logs["completion"].extend(completions_text)
self._textual_logs["rewards"]["binary_correctness"].extend(advantages.tolist())
return {
"prompt_ids": prompt_ids,
"prompt_mask": prompt_mask,
"completion_ids": completion_ids,
"completion_mask": completion_mask,
"interpreter_mask": interpreter_mask,
"advantages": advantages
}
# Get the per-token log probabilities for the completions for the model and the reference model
@profiling_decorator
def _get_per_token_logps(self, model, input_ids, attention_mask, logits_to_keep, batch_size=None) -> torch.Tensor:
batch_size = batch_size or input_ids.size(0) # Chunk inputs into smaller batches to reduce memory peak
all_logps = []
for i in range(0, input_ids.size(0), batch_size):
input_ids_batch = input_ids[i : i + batch_size]
attention_mask_batch = attention_mask[i : i + batch_size]
# We add 1 to `logits_to_keep` because the last logits of the sequence is later excluded
logits = model(
input_ids=input_ids_batch, attention_mask=attention_mask_batch, logits_to_keep=logits_to_keep + 1
).logits
logits = logits[:, :-1, :] # (B, L-1, V), exclude the last logit: it corresponds to the next token pred
input_ids_batch = input_ids_batch[:, -logits_to_keep:]
# For transformers<=4.48, logits_to_keep argument isn't supported, so here we drop logits ourselves.
# See https://github.com/huggingface/trl/issues/2770
logits = logits[:, -logits_to_keep:]
# Divide logits by sampling temperature.
# See https://huggingface.co/blog/the_n_implementation_details_of_rlhf_with_ppo#policy-training-implementation-details
logits = logits / self.temperature
logps = selective_log_softmax(logits, input_ids_batch) # compute logprobs for the input tokens
all_logps.append(logps)
return torch.cat(all_logps, dim=0)
@staticmethod
def selective_log_softmax(logits, index):
"""
A memory-efficient implementation of the common `log_softmax -> gather` operation.
This function is equivalent to the following naive implementation:
```python
logps = torch.gather(logits.log_softmax(-1), dim=-1, index=index.unsqueeze(-1)).squeeze(-1)
```
Args:
logits (`torch.Tensor`):
Logits tensor of shape `(..., num_classes)`.
index (`torch.Tensor`):
Index tensor of shape `(...)`, specifying the positions to gather from the log-softmax output.
Returns:
`torch.Tensor`:
Gathered log probabilities with the same shape as `index`.
"""
if logits.dtype in [torch.float32, torch.float64]:
selected_logits = torch.gather(logits, dim=-1, index=index.unsqueeze(-1)).squeeze(-1)
# loop to reduce peak mem consumption
logsumexp_values = torch.stack([torch.logsumexp(lg, dim=-1) for lg in logits])
per_token_logps = selected_logits - logsumexp_values # log_softmax(x_i) = x_i - logsumexp(x)
else:
# logsumexp approach is unstable with bfloat16, fall back to slightly less efficent approach
per_token_logps = []
for row_logits, row_labels in zip(logits, index): # loop to reduce peak mem consumption
row_logps = F.log_softmax(row_logits, dim=-1)
row_per_token_logps = row_logps.gather(dim=-1, index=row_labels.unsqueeze(-1)).squeeze(-1)
per_token_logps.append(row_per_token_logps)
per_token_logps = torch.stack(per_token_logps)
return per_token_logps
def _compute_loss(self, model, inputs):
# Compute the per-token log probabilities for the model
prompt_ids, prompt_mask = inputs["prompt_ids"], inputs["prompt_mask"]
completion_ids, completion_mask = inputs["completion_ids"], inputs["completion_mask"]
# Added for ReTool Trainer
interpreter_mask = inputs["interpreter_mask"]
final_mask = interpreter_mask * completion_mask
input_ids = torch.cat([prompt_ids, completion_ids], dim=1)
attention_mask = torch.cat([prompt_mask, completion_mask], dim=1)
logits_to_keep = completion_ids.size(1) # we only need to compute the logits for the completion tokens
per_token_logps = self._get_per_token_logps(model, input_ids, attention_mask, logits_to_keep)
with torch.no_grad():
ref_per_token_logps = self._get_per_token_logps(
self.ref_model, input_ids, attention_mask, logits_to_keep
)
# Compute the KL divergence between the model and the reference model
if self.beta != 0.0:
per_token_kl = (
torch.exp(ref_per_token_logps - per_token_logps) - (ref_per_token_logps - per_token_logps) - 1
)
# Compute the loss
advantages = inputs["advantages"]
old_per_token_logps = ref_per_token_logps
coef_1 = torch.exp(per_token_logps - old_per_token_logps)
coef_2 = torch.clamp(coef_1, 1 - self.epsilon_low, 1 + self.epsilon_high)
per_token_loss1 = coef_1 * advantages.unsqueeze(1)
per_token_loss2 = coef_2 * advantages.unsqueeze(1)
per_token_loss = -torch.min(per_token_loss1, per_token_loss2)
if self.beta != 0.0:
per_token_loss = per_token_loss + self.beta * per_token_kl
# For PPO loss
masked_loss = per_token_loss * final_mask
total_valid_tokens = final_mask.sum() + 1e-8 # Avoid division by zero
loss = masked_loss.sum() / total_valid_tokens
""" --- """
# Log the metrics
mode = "train" if self.model.training else "eval"
if self.beta != 0.0:
mean_kl = (per_token_kl * final_mask).sum() / final_mask.sum()
self._metrics[mode]["kl"].append(self.accelerator.gather_for_metrics(mean_kl).nanmean().item())
# Compute the clipped probability ratios
is_low_clipped = (coef_1 < 1 - self.epsilon_low) & (advantages.unsqueeze(1) < 0)
is_high_clipped = (coef_1 > 1 + self.epsilon_high) & (advantages.unsqueeze(1) > 0)
is_region_clipped = is_low_clipped | is_high_clipped
low_clip = (is_low_clipped * final_mask).sum() / final_mask.sum()
high_clip = (is_high_clipped * final_mask).sum() / final_mask.sum()
clip_ratio = (is_region_clipped * final_mask).sum() / final_mask.sum()
gathered_low_clip = self.accelerator.gather_for_metrics(low_clip)
self._metrics[mode]["clip_ratio/low_mean"].append(gathered_low_clip.nanmean().item())
self._metrics[mode]["clip_ratio/low_min"].append(nanmin(gathered_low_clip).item())
gathered_high_clip = self.accelerator.gather_for_metrics(high_clip)
self._metrics[mode]["clip_ratio/high_mean"].append(gathered_high_clip.nanmean().item())
self._metrics[mode]["clip_ratio/high_max"].append(nanmax(gathered_high_clip).item())
gathered_clip_ratio = self.accelerator.gather_for_metrics(clip_ratio)
self._metrics[mode]["clip_ratio/region_mean"].append(gathered_clip_ratio.nanmean().item())
return loss |