File size: 27,498 Bytes
cb481ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
from typing import Any, Callable, Optional, Union
from collections import defaultdict
import re
import profiling_decorator

import datasets
import torch
import torch.utils.data
import transformers
from accelerate.utils import broadcast_object_list, gather, gather_object, is_peft_model, set_seed
from datasets import Dataset, IterableDataset
from packaging import version
from torch import nn
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.utils.data import DataLoader, Sampler
from transformers import (
    AutoModelForCausalLM,
    AutoModelForSequenceClassification,
    AutoTokenizer,
    GenerationConfig,
    PreTrainedModel,
    PreTrainedTokenizerBase,
    Trainer,
    TrainerCallback,
    is_wandb_available,
    PreTrainedTokenizer,
)



class ReToolTrainer(Trainer):  # Change this line
    
    def __init__(
        self,
        model: Optional[PreTrainedModel] = None,
        processing_class: Optional[PreTrainedTokenizerBase] = None,
        args: Optional[transformers.TrainingArguments] = None,
        reward_funcs: Optional[list[Callable]] = None,
        train_dataset: Optional[Dataset] = None,
        eval_dataset: Optional[Dataset] = None,
        # ReTool specific parameters - same as before
        eos_id: Optional[int] = None,
        interpreter_id: Optional[list[int]] = None,
        code_id: Optional[list[int]] = None,
        max_turns: int = 10,
        max_completion_length: int = 1024,
        temperature: float = 0.7,
        top_p: float = 0.9,
        top_k: int = 50,
        min_p: Optional[float] = None,
        mask_truncated_completions: bool = True,
        **kwargs
    ):
        # Initialize parent Trainer (simpler call)
        super().__init__(
            model=model,
            tokenizer=processing_class,  # Note: Trainer uses 'tokenizer', not 'processing_class'
            args=args,
            train_dataset=train_dataset,
            eval_dataset=eval_dataset,
            **kwargs
        )
        

        # Store processing_class for compatibility
        self.processing_class = processing_class or self.tokenizer
        
        # Add reward function handling (since Trainer doesn't have this)
        self.reward_funcs = reward_funcs or [self._binary_reward_function]
        
        # Rest of the ReTool-specific code stays exactly the same!
        self.eos_id = eos_id or self.processing_class.eos_token_id


        # ReTool specific attributes
        self.eos_id = eos_id or self.processing_class.eos_token_id
        self.interpreter_id = interpreter_id or self._get_interpreter_token_ids()
        self.code_id = code_id or self._get_code_token_ids()
        self.max_turns = max_turns
        self.max_completion_length = max_completion_length
        self.temperature = temperature
        self.top_p = top_p
        self.top_k = top_k
        self.min_p = min_p
        self.mask_truncated_completions = mask_truncated_completions
        
        # ReTool specific logging
        self.reward_func_names = ["binary_correctness"]
        self._metrics = {"train": defaultdict(list), "eval": defaultdict(list)}
        self._textual_logs = {
            "prompt": [],
            "completion": [],
            "rewards": {"binary_correctness": []}
        }
        
        # Generation configuration for ReTool
        self.generation_config = GenerationConfig(
            max_new_tokens=50,  # Per turn, not total
            do_sample=True,
            pad_token_id=self.processing_class.pad_token_id,
            bos_token_id=self.processing_class.bos_token_id,
            eos_token_id=[self.eos_id, self.code_id[1]],  # Stop on EOS or </code>
            temperature=self.temperature,
            top_p=self.top_p,
            top_k=self.top_k,
            min_p=self.min_p,
            return_dict_in_generate=True,
            use_cache=True,
        )


    def _get_interpreter_token_ids(self) -> list[int]:
        """Get token IDs for <interpreter> and </interpreter> tags."""
        start_token = self.processing_class.encode("<interpreter>", add_special_tokens=False)[0]
        end_token = self.processing_class.encode("</interpreter>", add_special_tokens=False)[0]
        return [start_token, end_token]
    
    def _get_code_token_ids(self) -> list[int]:
        """Get token IDs for <code> and </code> tags."""
        start_token = self.processing_class.encode("<code>", add_special_tokens=False)[0]
        end_token = self.processing_class.encode("</code>", add_special_tokens=False)[0]
        return [start_token, end_token]
    
    def _binary_reward_function(self, prompts, completions, **kwargs) -> list[float]:
        """Default binary reward function for mathematical correctness."""
        rewards = []
        ground_truths = kwargs.get('ground_truths', [None] * len(completions))
        
        for completion, ground_truth in zip(completions, ground_truths):
            if self._is_correct_answer(completion, ground_truth):
                rewards.append(1.0)
            else:
                rewards.append(-1.0)
        return rewards
    
    def _execute_code(self, code_block: str) -> str:
        """
        Execute code in a sandbox environment.
        
        TODO: Implement actual code execution sandbox.
        For now, returns a placeholder.
        """
        # Placeholder implementation
        return f"Executed: {code_block[:50]}... -> Result: 42"
    

    def _check_equivalence(self, predicted, ground_truth):
        """Simple equivalence check - you can make this more sophisticated later."""
        # Simple string comparison for now
        return str(predicted).strip() == str(ground_truth).strip()

    def _is_correct_answer(self, completion_text, ground_truth):
        import re
        # Look for boxed answer
        match = re.search(r'\\boxed\{([^}]+)\}', completion_text)
        if match:
            predicted = match.group(1)
            return self._check_equivalence(predicted, ground_truth)
        return False

    def _compute_rewards_and_advantages(self, completions_text, ground_truths, device):
        """Simplified reward and advantage computation for ReTool."""
        
        # Compute binary rewards
        rewards = []
        for completion_text, ground_truth in zip(completions_text, ground_truths):
            if self._is_correct_answer(completion_text, ground_truth):
                rewards.append(1.0)
            else:
                rewards.append(-1.0)
        
        # For now: advantages = rewards (skip group normalization)
        advantages = torch.tensor(rewards, dtype=torch.float32, device=device)
        
        return advantages
    

    def _retool_generate_with_interpreter(
        self,
        prompt_ids_batch: torch.Tensor, # Full batch of prompts
        attention_mask_batch: torch.Tensor, # Full batch of attention masks for prompts
        #tokenizer: PreTrainedTokenizer, # use self.processiing_class for Tokenizer 
        eos_id: int, # True end-of-sequence token ID
        interpreter_id: list[int],  # [start_id, end_id]
        code_id: list[int],         # [start_id, end_id]
        max_turns: int = 10
    ) -> tuple[torch.LongTensor, list[list[tuple[int, int]]]]:

        batch_size = prompt_ids_batch.size(0)
        batch_completion = []
        batch_interpreter_positions = []

        for i in range(batch_size): # Process each item in the batch
            # --- Initialization for the current sequence ---
            current_input_id = prompt_ids_batch[i:i+1] # Initial input is the prompt
            current_attention_mask = attention_mask_batch[i:i+1] 
            current_kv = None

            # NEW: Track only the completion part (no prompt)
            cumulative_completion_ids = torch.empty((1, 0), dtype=torch.long, device=prompt_ids_batch.device)
            interpreter_positions = []

            for turn_idx in range(max_turns):
                # --- Stage 1: LM generates text ---
                model_outputs = self.model.generate(
                    input_ids=current_input_id,
                    attention_mask=current_attention_mask, # This mask is for (history in KV cache + current_input_id)
                    eos_token_id=[eos_id, code_id[1]], # code_id[1] is assumed to be </code>'s last token ID
                    past_key_values=current_kv,
                    generation_config=self.generation_config, # Ensure this has return_dict_in_generate=True, use_cache=True
                    # max_new_tokens should be set in self.generation_config appropriately for a segment
                )

                # Update current_full_ids to the new complete sequence
                current_full_ids = model_outputs.sequences

                # Newly generated tokens by the LM in THIS step
                completion_id = current_full_ids[:, current_input_id.size(1):]
            
                # Add to completion tracking (excludes prompt)
                cumulative_completion_ids = torch.cat([cumulative_completion_ids, completion_id], dim=1)

                # Update current_input_id for the next generation step    
                # Update current_attention_mask: it was for (history + current_input_id), 
                # now append 1s for completion_id
                current_attention_mask = torch.cat([
                    current_attention_mask, 
                    torch.ones_like(completion_id)
                ], dim=1)
            
                current_kv = model_outputs.past_key_values  # Cache for the new current_full_ids

                last_token_id = current_full_ids[0, -1].item()

                if last_token_id == eos_id or turn_idx == max_turns - 1:
                    batch_completion.append(cumulative_completion_ids.squeeze(0))
                    batch_interpreter_positions.append(interpreter_positions) # Note: was batch_interpreter_positions[i] = ...
                    break

                if last_token_id == code_id[1]: # Assuming code_id[1] is the specific ID for </code> last token
                    # --- Stage 2: Tool Execution ---
                    # Extract code from the generated sequence
                    full_text = self.processing_class.decode(current_full_ids[0])
                    code_match = re.search(r'<code>(.*?)</code>', full_text, re.DOTALL)
                    if code_match:
                        code_block = code_match.group(1)
                        interpreter_text = self._execute_code(code_block)  # πŸ‘ˆ To do: code sandbox execution πŸ‘ˆ
                    else:
                        interpreter_text = "Error: No code found"
                    
                    formatted_feedback_text = f"{self.processing_class.decode(interpreter_id[0])}{interpreter_text}{self.processing_class.decode(interpreter_id[1])}"

                    interpreter_feedback_id = self.processing_class(
                        formatted_feedback_text, 
                        return_tensors="pt", 
                        add_special_tokens=False
                    ).input_ids.to(current_full_ids.device)


                    # Record positions relative to cumulative_completion_ids *before* appending feedback
                    interpreter_start_idx = cumulative_completion_ids.size(1)
                    cumulative_completion_ids = torch.cat([cumulative_completion_ids, interpreter_feedback_id], dim=1)  # Use cumulative, not current
                    interpreter_end_idx = cumulative_completion_ids.size(1) - 1
                    interpreter_positions.append((interpreter_start_idx, interpreter_end_idx))

                    # Update attention mask for the appended tool feedback
                    current_attention_mask = torch.cat([
                        current_attention_mask, 
                        torch.ones_like(interpreter_feedback_id)
                    ], dim=1)
                    
                    # Prepare for the next LM generation step:
                    # The model needs to "process" the tool_output_tokens to update its KV cache.
                    # The `current_input_id` for the next generate call will be `interpreter_feedback_id`.
                    # `current_kv` already holds the cache for `current_full_ids` *before* the tool feedback was appended.
                    # The `current_attention_mask` now correctly covers `current_full_ids` (which includes tool feedback).
                    current_input_id = interpreter_feedback_id
                    # `current_kv` is correct (it's for the prefix before `interpreter_feedback_id`).
                    # The next `model.generate` call will use this `current_input_id`, `current_attention_mask`, and `current_kv`.
                else:
                    # LM stopped for a reason other than EOS or code_end` (e.g., max_new_tokens for the segment)
                    batch_completion.append(cumulative_completion_ids.squeeze(0))
                    batch_interpreter_positions.append(interpreter_positions)
                    # At the end, return full sequence (prompt + completion)
                    break
            else: # Executed if the loop finished due to max_turns without a break
                batch_completion.append(cumulative_completion_ids.squeeze(0))
                batch_interpreter_positions.append(interpreter_positions)


        # Pad sequences in the batch to the same length for returning a single tensor
        # This is a common step if you started with a batch loop.
        # Alternatively, this function could return a list of tensors if lengths vary.
        # For now, assuming you'll handle batch padding outside or return a list.
        # The return type `torch.LongTensor` implies a padded batch.
        padded_sequences = torch.nn.utils.rnn.pad_sequence(batch_completion, batch_first=True, padding_value=self.processing_class.pad_token_id)

        return padded_sequences, batch_interpreter_positions
    


    def _create_interpreter_mask(
        self, 
        completion_ids: torch.Tensor, 
        interpreter_positions: list[list[tuple[int, int]]]
    ) -> torch.Tensor:
        """
        Create interpreter mask from positions.
        
        Args:
            completion_ids: Tensor of shape (batch_size, seq_length)
            interpreter_positions: List[List[Tuple[start_idx, end_idx]]]
                                - Indices are relative to completion_ids
                                - start_idx: inclusive, end_idx: INCLUSIVE (unlike typical Python slicing)
        
        Returns:
            interpreter_mask: Tensor of shape (batch_size, seq_length)
                            1 = model-generated token, 0 = interpreter token
        """
        batch_size, seq_length = completion_ids.shape
        
        # Initialize mask with all 1s (assume all tokens are model-generated)
        interpreter_mask = torch.ones(batch_size, seq_length, dtype=torch.float, device=completion_ids.device)
        
        # For each sequence in the batch
        for batch_idx, positions_in_sequence in enumerate(interpreter_positions):
            # For each interpreter section in this sequence
            for start_idx, end_idx in positions_in_sequence:
                # Clamp indices to valid range
                start_idx = max(0, min(start_idx, seq_length - 1))
                end_idx = max(0, min(end_idx, seq_length - 1))
                
                # Zero out interpreter tokens (BOTH start and end inclusive)
                if start_idx <= end_idx:  # Changed from < to <=
                    interpreter_mask[batch_idx, start_idx:end_idx + 1] = 0  # Changed to end_idx + 1
        
        return interpreter_mask
    

def _generate_and_score_completions(
        self, inputs: list[dict[str, Union[torch.Tensor, Any]]]
    ) -> dict[str, Union[torch.Tensor, Any]]:
    
        device = self.accelerator.device
        mode = "train" if self.model.training else "eval"

        prompts = [x["prompt"] for x in inputs]
        prompts_text = [maybe_apply_chat_template(example, self.processing_class)["prompt"] for example in inputs]
        prompt_inputs = self.processing_class(
            text=prompts_text, return_tensors="pt", padding=True, padding_side="left", add_special_tokens=False
        )
        prompt_inputs = super()._prepare_inputs(prompt_inputs)
        prompt_ids, prompt_mask = prompt_inputs["input_ids"], prompt_inputs["attention_mask"]

        if self.max_prompt_length is not None:
            prompt_ids = prompt_ids[:, -self.max_prompt_length :]
            prompt_mask = prompt_mask[:, -self.max_prompt_length :]


        # use custom multi-turn-w-tool-use Generate completions
        completion_ids, interpreter_positions = self._retool_generate_with_interpreter(
            prompt_ids, attention_mask=prompt_mask, generation_config=self.generation_config,
            eos_id = self.eos_id, interpreter_id = self.interpreter_id, code_id = self.code_id 
        )
    

        # Mask everything after the first EOS token
        is_eos = completion_ids == self.processing_class.eos_token_id
        eos_idx = torch.full((is_eos.size(0),), is_eos.size(1), dtype=torch.long, device=device)
        eos_idx[is_eos.any(dim=1)] = is_eos.int().argmax(dim=1)[is_eos.any(dim=1)]
        sequence_indices = torch.arange(is_eos.size(1), device=device).expand(is_eos.size(0), -1)
        completion_mask = (sequence_indices <= eos_idx.unsqueeze(1)).int()


        # compute interpreter mask
        interpreter_mask = self._create_interpreter_mask(completion_ids, interpreter_positions)
    

        # If mask_truncated_completions is enabled, zero out truncated completions in completion_mask
        if self.mask_truncated_completions:
            truncated_completions = ~is_eos.any(dim=1)
            completion_mask = completion_mask * (~truncated_completions).unsqueeze(1).int()

        # Concatenate prompt_mask with completion_mask for logit computation
        attention_mask = torch.cat([prompt_mask, completion_mask], dim=1)  # (B, P+C)


        # no need to return old_per_token_logps

        # Extract ground truths from inputs  
        ground_truths = [x.get("answer") for x in inputs]  # Adjust key name as needed
        
        # Decode completions for reward computation
        completions_text = self.processing_class.batch_decode(completion_ids, skip_special_tokens=True)
        
        # Compute rewards and advantages
        advantages = self._compute_rewards_and_advantages(
            completions_text, 
            ground_truths, 
            device=device
        )


        # Log the metrics 
        if mode == "train":
            self.state.num_input_tokens_seen += attention_mask.sum().item()  # Skip gather
        self._metrics[mode]["num_tokens"] = [self.state.num_input_tokens_seen]
        
        # Log completion lengths
        completion_lengths = completion_mask.sum(1)  # Skip gather
        self._metrics[mode]["completions/mean_length"].append(completion_lengths.float().mean().item())
        self._metrics[mode]["completions/min_length"].append(completion_lengths.float().min().item())
        self._metrics[mode]["completions/max_length"].append(completion_lengths.float().max().item())
        
        # Log terminated sequences
        terminated_with_eos = is_eos.any(dim=1)  # Skip gather
        term_completion_lengths = completion_lengths[terminated_with_eos]
        clipped_completions_ratio = 1 - len(term_completion_lengths) / len(completion_lengths)
        self._metrics[mode]["completions/clipped_ratio"].append(clipped_completions_ratio)
        
        if len(term_completion_lengths) == 0:
            term_completion_lengths = torch.zeros(1, device=device)
        
        self._metrics[mode]["completions/mean_terminated_length"].append(term_completion_lengths.float().mean().item())
        
        # Log rewards (simplified for single reward function)
        advantages_tensor = advantages 
        self._metrics[mode]["rewards/binary_correctness/mean"].append(advantages_tensor.mean().item())
        self._metrics[mode]["rewards/binary_correctness/std"].append(advantages_tensor.std().item())

        
        # Log texts for debugging
        self._textual_logs["prompt"].extend(prompts_text)
        self._textual_logs["completion"].extend(completions_text)
        self._textual_logs["rewards"]["binary_correctness"].extend(advantages.tolist())

        return {
            "prompt_ids": prompt_ids,
            "prompt_mask": prompt_mask,
            "completion_ids": completion_ids,
            "completion_mask": completion_mask,
            "interpreter_mask": interpreter_mask,
            "advantages": advantages
        }


# Get the per-token log probabilities for the completions for the model and the reference model
@profiling_decorator
def _get_per_token_logps(self, model, input_ids, attention_mask, logits_to_keep, batch_size=None) -> torch.Tensor:
    batch_size = batch_size or input_ids.size(0)  # Chunk inputs into smaller batches to reduce memory peak
    all_logps = []
    for i in range(0, input_ids.size(0), batch_size):
        input_ids_batch = input_ids[i : i + batch_size]
        attention_mask_batch = attention_mask[i : i + batch_size]

        # We add 1 to `logits_to_keep` because the last logits of the sequence is later excluded
        logits = model(
            input_ids=input_ids_batch, attention_mask=attention_mask_batch, logits_to_keep=logits_to_keep + 1
        ).logits
        logits = logits[:, :-1, :]  # (B, L-1, V), exclude the last logit: it corresponds to the next token pred
        input_ids_batch = input_ids_batch[:, -logits_to_keep:]
        # For transformers<=4.48, logits_to_keep argument isn't supported, so here we drop logits ourselves.
        # See https://github.com/huggingface/trl/issues/2770
        logits = logits[:, -logits_to_keep:]
        # Divide logits by sampling temperature.
        # See https://huggingface.co/blog/the_n_implementation_details_of_rlhf_with_ppo#policy-training-implementation-details
        logits = logits / self.temperature
        logps = selective_log_softmax(logits, input_ids_batch)  # compute logprobs for the input tokens
        all_logps.append(logps)
    return torch.cat(all_logps, dim=0)


@staticmethod
def selective_log_softmax(logits, index):
    """
    A memory-efficient implementation of the common `log_softmax -> gather` operation.

    This function is equivalent to the following naive implementation:
    ```python
    logps = torch.gather(logits.log_softmax(-1), dim=-1, index=index.unsqueeze(-1)).squeeze(-1)
    ```

    Args:
        logits (`torch.Tensor`):
            Logits tensor of shape `(..., num_classes)`.
        index (`torch.Tensor`):
            Index tensor of shape `(...)`, specifying the positions to gather from the log-softmax output.

    Returns:
        `torch.Tensor`:
            Gathered log probabilities with the same shape as `index`.
    """
    if logits.dtype in [torch.float32, torch.float64]:
        selected_logits = torch.gather(logits, dim=-1, index=index.unsqueeze(-1)).squeeze(-1)
        # loop to reduce peak mem consumption
        logsumexp_values = torch.stack([torch.logsumexp(lg, dim=-1) for lg in logits])
        per_token_logps = selected_logits - logsumexp_values  # log_softmax(x_i) = x_i - logsumexp(x)
    else:
        # logsumexp approach is unstable with bfloat16, fall back to slightly less efficent approach
        per_token_logps = []
        for row_logits, row_labels in zip(logits, index):  # loop to reduce peak mem consumption
            row_logps = F.log_softmax(row_logits, dim=-1)
            row_per_token_logps = row_logps.gather(dim=-1, index=row_labels.unsqueeze(-1)).squeeze(-1)
            per_token_logps.append(row_per_token_logps)
        per_token_logps = torch.stack(per_token_logps)
    return per_token_logps


def _compute_loss(self, model, inputs):
        # Compute the per-token log probabilities for the model
        prompt_ids, prompt_mask = inputs["prompt_ids"], inputs["prompt_mask"]
        completion_ids, completion_mask  = inputs["completion_ids"], inputs["completion_mask"]
        
        # Added for ReTool Trainer
        interpreter_mask = inputs["interpreter_mask"]
        final_mask = interpreter_mask * completion_mask
    
        input_ids = torch.cat([prompt_ids, completion_ids], dim=1)
        attention_mask = torch.cat([prompt_mask, completion_mask], dim=1)
        logits_to_keep = completion_ids.size(1)  # we only need to compute the logits for the completion tokens

        per_token_logps = self._get_per_token_logps(model, input_ids, attention_mask, logits_to_keep)

        with torch.no_grad():
            ref_per_token_logps = self._get_per_token_logps(
                self.ref_model, input_ids, attention_mask, logits_to_keep
            )
        # Compute the KL divergence between the model and the reference model
        if self.beta != 0.0:
            per_token_kl = (
                torch.exp(ref_per_token_logps - per_token_logps) - (ref_per_token_logps - per_token_logps) - 1
            )

        # Compute the loss
        advantages = inputs["advantages"]

        old_per_token_logps = ref_per_token_logps
        coef_1 = torch.exp(per_token_logps - old_per_token_logps)
        coef_2 = torch.clamp(coef_1, 1 - self.epsilon_low, 1 + self.epsilon_high)

        per_token_loss1 = coef_1 * advantages.unsqueeze(1)
        per_token_loss2 = coef_2 * advantages.unsqueeze(1)
        per_token_loss = -torch.min(per_token_loss1, per_token_loss2)
        if self.beta != 0.0:
            per_token_loss = per_token_loss + self.beta * per_token_kl

    
        # For PPO loss
        masked_loss = per_token_loss * final_mask
        total_valid_tokens = final_mask.sum() + 1e-8  # Avoid division by zero
        loss = masked_loss.sum() / total_valid_tokens

        """ --- """
    
        # Log the metrics
        mode = "train" if self.model.training else "eval"

        if self.beta != 0.0:
            mean_kl = (per_token_kl * final_mask).sum() / final_mask.sum()
            self._metrics[mode]["kl"].append(self.accelerator.gather_for_metrics(mean_kl).nanmean().item())

        # Compute the clipped probability ratios
        is_low_clipped = (coef_1 < 1 - self.epsilon_low) & (advantages.unsqueeze(1) < 0)
        is_high_clipped = (coef_1 > 1 + self.epsilon_high) & (advantages.unsqueeze(1) > 0)
        is_region_clipped = is_low_clipped | is_high_clipped

        low_clip = (is_low_clipped * final_mask).sum() / final_mask.sum()
        high_clip = (is_high_clipped * final_mask).sum() / final_mask.sum()
        clip_ratio = (is_region_clipped * final_mask).sum() / final_mask.sum()

        gathered_low_clip = self.accelerator.gather_for_metrics(low_clip)
        self._metrics[mode]["clip_ratio/low_mean"].append(gathered_low_clip.nanmean().item())
        self._metrics[mode]["clip_ratio/low_min"].append(nanmin(gathered_low_clip).item())
        gathered_high_clip = self.accelerator.gather_for_metrics(high_clip)
        self._metrics[mode]["clip_ratio/high_mean"].append(gathered_high_clip.nanmean().item())
        self._metrics[mode]["clip_ratio/high_max"].append(nanmax(gathered_high_clip).item())
        gathered_clip_ratio = self.accelerator.gather_for_metrics(clip_ratio)
        self._metrics[mode]["clip_ratio/region_mean"].append(gathered_clip_ratio.nanmean().item())
        return loss