File size: 48,963 Bytes
cb481ca
 
c710786
 
 
 
 
 
 
 
 
 
 
 
 
cb481ca
 
 
 
e9196fe
cb481ca
 
 
 
 
 
c710786
cb481ca
 
 
 
 
 
 
 
 
 
 
a0dec77
cb481ca
 
c710786
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb481ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c710786
cb481ca
 
 
c710786
 
cb481ca
 
c710786
 
 
cb481ca
 
 
 
 
 
f757722
 
 
 
 
 
 
 
 
 
cb481ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f757722
cb481ca
 
 
 
 
 
f757722
cb481ca
c710786
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb481ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9196fe
 
 
 
 
 
 
 
 
 
cb481ca
e9196fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb481ca
e9196fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb481ca
 
 
 
a0dec77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb481ca
a0dec77
 
cb481ca
 
 
a0dec77
 
 
 
 
cb481ca
a0dec77
 
cb481ca
 
a0dec77
cb481ca
a0dec77
 
 
 
 
 
cb481ca
a0dec77
cb481ca
a0dec77
 
cb481ca
a0dec77
 
 
 
 
 
 
 
cb481ca
 
a0dec77
cb481ca
a0dec77
 
 
 
 
 
 
cb481ca
a0dec77
cb481ca
a0dec77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb481ca
a0dec77
 
cb481ca
a0dec77
 
 
 
 
cb481ca
 
a0dec77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb481ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c710786
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
import profiling_decorator

import copy
import inspect
import os
import re
import textwrap
import warnings
from collections import defaultdict, deque
from collections.abc import Sequence, Sized
from contextlib import nullcontext
from functools import partial
from pathlib import Path
from typing import Any, Callable, Optional, Union

import datasets
import torch
import torch.utils.data
import transformers
#from accelerate.utils import broadcast_object_list, gather, gather_object, is_peft_model, set_seed
from datasets import Dataset, IterableDataset
from packaging import version
from torch import nn
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.utils.data import DataLoader, Sampler
from transformers import (
    AutoConfig,
    AutoModelForCausalLM,
    AutoModelForSequenceClassification,
    AutoTokenizer,
    GenerationConfig,
    PreTrainedModel,
    PreTrainedTokenizerBase,
    Trainer,
    TrainerCallback,
    is_wandb_available,
    PreTrainedTokenizer,
)
from transformers import AutoTokenizer, AutoModelForCausalLM, DynamicCache


class HFRepeatSampler(Sampler):
    """
    Sampler that repeats the indices of a dataset in a structured manner.

    Args:
        data_source (`Sized`):
            Dataset to sample from.
        mini_repeat_count (`int`):
            Number of times to repeat each index per batch.
        batch_size (`int`, *optional*, defaults to `1`):
            Number of unique indices per batch.
        repeat_count (`int`, *optional*, defaults to `1`):
            Number of times to repeat the full sampling process.
        shuffle (`bool`, *optional*, defaults to `True`):
            Whether to shuffle the dataset.
        seed (`int` or `None`, *optional*, defaults to `None`):
            Random seed for reproducibility (only affects this sampler).

    Example:
    ```python
    >>> sampler = RepeatSampler(
    ...     ["a", "b", "c", "d", "e", "f", "g"], mini_repeat_count=2, batch_size=3, repeat_count=4
    ... )
    >>> list(sampler)
    [4, 4, 3, 3, 0, 0,
     4, 4, 3, 3, 0, 0,
     4, 4, 3, 3, 0, 0,
     4, 4, 3, 3, 0, 0,
     1, 1, 2, 2, 6, 6,
     1, 1, 2, 2, 6, 6,
     1, 1, 2, 2, 6, 6,
     1, 1, 2, 2, 6, 6]
    ```

    ```txt
    mini_repeat_count = 3
          -   -   -
         [0,  0,  0,  1,  1,  1,  2,  2,  2,  3,  3,  3,      |
          4,  4,  4,  5,  5,  5,  6,  6,  6,  7,  7,  7,      |
          8,  8,  8,  9,  9,  9, 10, 10, 10, 11, 11, 11,      |
                                                                repeat_count = 2
          0,  0,  0,  1,  1,  1,  2,  2,  2,  3,  3,  3,      |
          4,  4,  4,  5,  5,  5,  6,  6,  6,  7,  7,  7,      |
          8,  8,  8,  9,  9,  9, 10, 10, 10, 11, 11, 11, ...] |
          ---------   ---------   ---------   ---------
           ---------   ---------   ---------   ---------
            ---------   ---------   ---------   ---------
                         batch_size = 12
    ```
    """

    def __init__(
        self,
        data_source: Sized,
        mini_repeat_count: int,
        batch_size: int = 1,
        repeat_count: int = 1,
        shuffle: bool = True,
        seed: Optional[int] = None,
    ):
        self.data_source = data_source
        self.mini_repeat_count = mini_repeat_count
        self.batch_size = batch_size
        self.repeat_count = repeat_count
        self.num_samples = len(data_source)
        self.shuffle = shuffle
        self.seed = seed

        if shuffle:
            self.generator = torch.Generator()  # Create a local random generator
            if seed is not None:
                self.generator.manual_seed(seed)

    def __iter__(self):
        if self.shuffle:
            # E.g., [2, 4, 3, 1, 0, 6, 5] (num_samples = 7)
            indexes = torch.randperm(self.num_samples, generator=self.generator).tolist()
        else:
            indexes = list(range(self.num_samples))

        #    [2, 4, 3, 1, 0, 6, 5]
        # -> [[2, 4, 3], [1, 0, 6], [5]]  (batch_size = 3)
        indexes = [indexes[i : i + self.batch_size] for i in range(0, len(indexes), self.batch_size)]

        #    [[2, 4, 3], [1, 0, 6], [5]]
        # -> [[2, 4, 3], [1, 0, 6]]
        indexes = [chunk for chunk in indexes if len(chunk) == self.batch_size]

        for chunk in indexes:
            for _ in range(self.repeat_count):
                for index in chunk:
                    for _ in range(self.mini_repeat_count):
                        yield index

    def __len__(self) -> int:
        return (self.num_samples // self.batch_size) * self.batch_size * self.mini_repeat_count * self.repeat_count




class ReToolTrainer(Trainer):  # Change this line
    
    def __init__(
        self,
        model: Optional[PreTrainedModel] = None,
        processing_class: Optional[PreTrainedTokenizerBase] = None,
        args: Optional[transformers.TrainingArguments] = None,
        reward_funcs: Optional[list[Callable]] = None,
        train_dataset: Optional[Dataset] = None,
        eval_dataset: Optional[Dataset] = None,
        # ReTool specific parameters - same as before
        eos_id: Optional[int] = None,
        interpreter_id: Optional[list[int]] = None,
        code_id: Optional[list[int]] = None,
        max_turns: int = 10,
        max_completion_length: int = 1024,
        temperature: float = 0.7,
        top_p: float = 0.9,
        top_k: int = 50,
        min_p: Optional[float] = None,
        mask_truncated_completions: bool = True,
        **kwargs
    ):
        # Initialize parent Trainer (simpler call)        
        super().__init__(
            model=model,
            args=args,
            tokenizer=processing_class,  # Note: Trainer uses 'tokenizer', not 'processing_class'
            data_collator=identity,  # No data collation is needed in GRPO
            train_dataset=train_dataset,
            eval_dataset=eval_dataset,
            processing_class=processing_class,
            callbacks=callbacks,
            optimizers=optimizers,
            **kwargs
        )

        # Store processing_class for compatibility
        self.processing_class = processing_class or self.tokenizer
        
        # Processing class
        if processing_class is None:
            self.processing_class = AutoTokenizer.from_pretrained(model.config._name_or_path, padding_side="left")
        else:
            # Store processing_class for compatibility
            self.processing_class = processing_class or self.tokenizer
        if processing_class.pad_token is None:
            self.processing_class.pad_token = processing_class.eos_token

        
        # Add reward function handling (since Trainer doesn't have this)
        self.reward_funcs = reward_funcs or [self._binary_reward_function]

        # ReTool specific attributes
        self.eos_id = eos_id or self.processing_class.eos_token_id
        self.interpreter_id = interpreter_id or self._get_interpreter_token_ids()
        self.code_id = code_id or self._get_code_token_ids()
        self.max_turns = max_turns
        self.max_completion_length = max_completion_length
        self.temperature = temperature
        self.top_p = top_p
        self.top_k = top_k
        self.min_p = min_p
        self.mask_truncated_completions = mask_truncated_completions
        
        # ReTool specific logging
        self.reward_func_names = ["binary_correctness"]
        self._metrics = {"train": defaultdict(list), "eval": defaultdict(list)}
        self._textual_logs = {
            "prompt": [],
            "completion": [],
            "rewards": {"binary_correctness": []}
        }
        
        # Generation configuration for ReTool
        self.generation_config = GenerationConfig(
            max_new_tokens=50,  # Per turn, not total
            do_sample=True,
            pad_token_id=self.processing_class.pad_token_id,
            bos_token_id=self.processing_class.bos_token_id,
            eos_token_id=self.eos_id,  # default stop on EOS
            temperature=self.temperature,
            top_p=self.top_p,
            top_k=self.top_k,
            min_p=self.min_p,
            return_dict_in_generate=True,
            use_cache=True,
            cache_implementation=args.cache_implementation, #args.cache_implementation = 'Offloaded Cache'
        )
    def _set_signature_columns_if_needed(self):
    # If `self.args.remove_unused_columns` is True, non-signature columns are removed.
    # By default, this method sets `self._signature_columns` to the model's expected inputs.
    # In GRPOTrainer, we preprocess data, so using the model's signature columns doesn't work.
    # Instead, we set them to the columns expected by the `training_step` method, hence the override.
        if self._signature_columns is None:
            self._signature_columns = ["prompt", "image"]
    
    def _get_train_sampler(self, dataset=None):
        """Override to use RepeatSampler for GRPO."""
        # Returns a sampler that
        # 1. ensures each prompt is repeated across multiple processes. This guarantees that identical prompts are
        #    distributed to different GPUs, allowing rewards to be computed and normalized correctly within each prompt
        #    group. Using the same seed across processes ensures consistent prompt assignment, preventing discrepancies
        #    in group formation.
        # 2. repeats the batch multiple times to allow reusing generations across multiple updates. Refer to
        #    _prepare_inputs to see how the generations are stored and reused.

        # In the following figure, the values are the prompt indices. The first row shows the first sampled batch, the
        # second row shows the second sampled batch, and so on.
        #
        #                                      |   GPU 0  |   GPU 1  |
        #
        #                 global_step   step    <-───>  num_generations=2
        #                                       <-───────> per_device_train_batch_size=3
        #  grad_accum    ▲  ▲  0          0     0   0   1   1   2   2   <- Generate for the first `steps_per_generation` (prompts 0 to 11); store the completions; use the first slice to compute the loss
        #     =2         ▼  |  0          1     3   3   4   4   5   5   <- Take the stored generations and use the second slice to compute the loss
        #                   |
        #                   |  1          2     6   6   7   7   8   8   <- Take the stored generations and use the third slice to compute the loss
        #  steps_per_gen=4  ▼  1          3     9   9  10  10  11  11   <- Take the stored generations and use the fourth slice to compute the loss
        #
        #                      2          4    12  12  13  13  14  14   <- Generate for the second `steps_per_generation` (prompts 12 to 23); store the completions; use the first slice to compute the loss
        #                      2          5    15  15  16  16  17  17   <- Take the stored generations and use the second slice to compute the loss
        #                                          ...
        if dataset is None:
            dataset = self.train_dataset
            
        return HFRepeatSampler(
            data_source=dataset,
            mini_repeat_count=self.num_generations,  # e.g., 4 completions per prompt
            batch_size=self.args.generation_batch_size // self.num_generations,   # correction
            repeat_count=self.num_iterations * self.args.steps_per_generation,    # correction
            shuffle=True,
            seed=self.args.seed
        )
    
    def get_train_dataloader(self):
        """Override to ensure our custom sampler is used."""
        if self.train_dataset is None:
            raise ValueError("Trainer: training requires a train_dataset.")

        train_dataset = self.train_dataset
        data_collator = self.data_collator
        if is_datasets_available() and isinstance(train_dataset, datasets.Dataset):
            train_dataset = self._remove_unused_columns(train_dataset, description="training")
        else:
            data_collator = self._get_collator_with_removed_columns(data_collator, description="training")
        
        sampler = self._get_train_sampler(train_dataset)
        dataloader_batch_size = self._train_batch_size * self.args.steps_per_generation
        
        return DataLoader(
            train_dataset,
            batch_size= self.args.generation_batch_size,  # < this is the change, HF was useing dataloader_batch_size
            sampler=sampler,
            collate_fn=data_collator,
            drop_last=self.args.dataloader_drop_last,
            num_workers=self.args.dataloader_num_workers,
        )

    def _get_interpreter_token_ids(self) -> list[int]:
        """Get token IDs for <interpreter> and </interpreter> tags."""
        start_token = self.processing_class.encode("<interpreter>", add_special_tokens=False)[0]
        end_token = self.processing_class.encode("</interpreter>", add_special_tokens=False)[0]
        return [start_token, end_token]
    
    def _get_code_token_ids(self) -> list[int]:
        """Get token IDs for <code> and </code> tags."""
        start_token = self.processing_class.encode("<code>", add_special_tokens=False)[0]
        end_token = self.processing_class.encode("</code>", add_special_tokens=False)[0]
        return [start_token, end_token]
    
    def _binary_reward_function(self, prompts, completions, **kwargs) -> list[float]:
        """Default binary reward function for mathematical correctness."""
        rewards = []
        ground_truths = kwargs.get('ground_truths', [None] * len(completions))
        
        for completion, ground_truth in zip(completions, ground_truths):
            if self._is_correct_answer(completion, ground_truth):
                rewards.append(1.0)
            else:
                rewards.append(-1.0)
        return rewards
    
    def _execute_code(self, code_block: str) -> str:
        """
        Execute code in a sandbox environment.
        
        TODO: Implement actual code execution sandbox.
        For now, returns a placeholder.
        """
        # Placeholder implementation
        return f"Executed: {code_block[:50]}... -> Result: 42"
    

    def _check_equivalence(self, predicted, ground_truth):
        """Simple equivalence check - you can make this more sophisticated later."""
        # Simple string comparison for now
        return str(predicted).strip() == str(ground_truth).strip()

    def _is_correct_answer(self, completion_text, ground_truth):
        import re
        # Look for boxed answer
        match = re.search(r'\\boxed\{([^}]+)\}', completion_text)
        if match:
            predicted = match.group(1)
            return self._check_equivalence(predicted, ground_truth)
        return False

    def _compute_rewards(self, inputs, prompts, completions, completion_ids_list=None):
        """Calculate rewards for completions and combine them according to weights."""
        device = self.device  # Your device might be set differently
        rewards_per_func = torch.zeros(len(prompts), len(self.reward_funcs), device=device)

        # Extract additional arguments from inputs if needed
        reward_kwargs = {}
        if isinstance(inputs, list) and len(inputs) > 0 and isinstance(inputs[0], dict):
            keys = [key for key in inputs[0] if key not in ["prompt", "completion", "completion_ids"]]
            reward_kwargs = {key: [example[key] for example in inputs] for key in keys}
        
        # Add correct_answers to kwargs if present (common in math reasoning tasks)
        if "correct_answers" in reward_kwargs:
            reward_kwargs["solution"] = reward_kwargs["correct_answers"]  # Alias for compatibility

        # Calculate rewards for each function with non-zero weight
        for i, (reward_func, func_name) in enumerate(zip(self.reward_funcs, self.reward_func_names)):
            # Skip computation if weight is zero
            if abs(self.reward_weights[i].item()) < 1e-6:
                rewards_per_func[:, i] = float('nan')
                if self.verbose:
                    print(f"Skipping reward '{func_name}' (zero weight)")
                continue
            
            # Calculate reward
            try:
                # Call the reward function with appropriate arguments
                rewards = reward_func(
                    prompts=prompts, 
                    completions=completions,
                    completion_ids=completion_ids_list if completion_ids_list is not None else None,
                    **reward_kwargs
                )
                
                # Convert None values to NaN and ensure it's a tensor
                rewards = [r if r is not None else float('nan') for r in rewards]
                rewards_per_func[:, i] = torch.tensor(rewards, dtype=torch.float32, device=device)
                
                # Log reward statistics if verbose
                if self.verbose:
                    valid_rewards = [r for r in rewards if not (r is None or (isinstance(r, float) and math.isnan(r)))]
                    if valid_rewards:
                        print(f"Reward '{func_name}': min={min(valid_rewards):.4f}, max={max(valid_rewards):.4f}, "
                            f"mean={sum(valid_rewards)/len(valid_rewards):.4f}")
            except Exception as e:
                print(f"Error in reward function '{func_name}': {e}")
                rewards_per_func[:, i] = float('nan')
        
        # Combine rewards using weights
        rewards = (rewards_per_func * self.reward_weights.to(device).unsqueeze(0)).nansum(dim=1)
        
        # Convert to list for easier handling
        final_rewards = rewards.cpu().tolist()
        
        return final_rewards
    

    def compute_rewards_and_advantages(self, inputs, prompts, completions, completion_ids_list=None):
        """Calculate rewards and compute advantages based on those rewards."""
        # First calculate rewards
        rewards = self.compute_rewards(inputs, prompts, completions, completion_ids_list)
        
        # Convert to tensor if not already
        if not isinstance(rewards, torch.Tensor):
            rewards = torch.tensor(rewards, dtype=torch.float32, device=self.device)
        
        # For now, simple advantage calculation
        advantages = rewards.clone()  # Simple case: advantages = rewards
        
        # If later I want to implement GRPO-style advantage calculation:
        if self.use_grouped_advantages:
            # Reshape rewards into groups (assuming self.num_generations is set)
            grouped_rewards = rewards.view(-1, self.num_generations)
            
            # Calculate statistics per group
            mean_grouped_rewards = grouped_rewards.mean(dim=1)
            std_grouped_rewards = grouped_rewards.std(dim=1)
            
            # Expand means and stds to match original shape
            mean_expanded = mean_grouped_rewards.repeat_interleave(self.num_generations, dim=0)
            std_expanded = std_grouped_rewards.repeat_interleave(self.num_generations, dim=0)
            
            # Compute advantages: reward - baseline
            advantages = rewards - mean_expanded
            
            # Optionally normalize advantages
            if self.normalize_advantages:
                # Avoid division by zero
                std_expanded = torch.clamp(std_expanded, min=1e-8)
                advantages = advantages / std_expanded
        
        return advantages
    

    def _custom_generate(self, input_ids, attention_mask=None, past_key_values=None, max_new_tokens=50, eos_token_ids=None):
        """Custom generation function that avoids KV cache issues"""
        if attention_mask is None:
            attention_mask = torch.ones_like(input_ids)
        
        if eos_token_ids is None:
            eos_token_ids = [self.processing_class.eos_token_id]
        
        # Initialize
        current_ids = input_ids.clone()
        current_mask = attention_mask.clone()
        current_kv = past_key_values
        
        # Generate tokens in batches for efficiency
        all_tokens = []
        batch_size = 10  # Process this many tokens at once
        
        for start_idx in range(0, max_new_tokens, batch_size):
            # How many tokens to generate in this batch
            batch_tokens = min(batch_size, max_new_tokens - start_idx)
            
            # Accumulate new tokens
            new_tokens = []
            
            for _ in range(batch_tokens):
                # Forward pass with proper cache handling
                with torch.no_grad():
                    outputs = self.model(
                        input_ids=current_ids if current_kv is None else current_ids[:, -1:],
                        attention_mask=current_mask if current_kv is None else current_mask[:, -1:],
                        past_key_values=DynamicCache.from_legacy_cache(current_kv) if current_kv is not None else None,
                        use_cache=True
                    )
                
                # Sample next token
                next_token_logits = outputs.logits[:, -1, :] / self.temperature
                filtered_logits = self._filter_logits(next_token_logits)
                probs = torch.nn.functional.softmax(filtered_logits, dim=-1)
                next_token = torch.multinomial(probs, num_samples=1)
                
                # Add to accumulated tokens
                token_id = next_token.item()
                new_tokens.append(token_id)
                
                # Update for next iteration
                current_ids = torch.cat([current_ids, next_token], dim=1)
                token_mask = torch.ones((1, 1), device=current_mask.device, dtype=current_mask.dtype)
                current_mask = torch.cat([current_mask, token_mask], dim=1)
                current_kv = outputs.past_key_values
                
                # Check for stop tokens - include both EOS and code_end
                if token_id in eos_token_ids:
                    break
            
            # Add batch tokens to overall result
            all_tokens.extend(new_tokens)
            
            # Check if we hit a stop token
            if len(new_tokens) < batch_tokens:
                break
        
        # Convert to tensor
        result = torch.tensor([all_tokens], device=input_ids.device)
        return result, current_kv

    def _filter_logits(self, logits):
        """Apply top-k and top-p filtering"""
        if self.top_k > 0:
            top_k_logits, top_k_indices = torch.topk(logits, self.top_k, dim=-1)
            logits[0, :] = torch.full_like(logits[0, :], float('-inf'))
            logits[0, top_k_indices[0]] = top_k_logits[0]
            
        if self.top_p < 1.0:
            sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
            cumulative_probs = torch.cumsum(torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1)
            
            # Remove tokens with cumulative probability above threshold
            sorted_indices_to_remove = cumulative_probs > self.top_p
            # Shift the indices to the right to keep the first token above threshold
            sorted_indices_to_remove[:, 1:] = sorted_indices_to_remove[:, :-1].clone()
            sorted_indices_to_remove[:, 0] = 0
            
            # Scatter sorted tensors to original indexing
            indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
            logits[indices_to_remove] = float('-inf')
            
        return logits

    def _retool_generate_with_interpreter(self, prompt_ids_batch, attention_mask_batch, eos_id, interpreter_id, code_id, max_turns=10):
        """Implementation with custom generation to avoid KV cache issues"""
        batch_size = prompt_ids_batch.size(0)
        batch_completion = []
        batch_interpreter_positions = []
        
        for i in range(batch_size):
            # Initialize
            current_input_id = prompt_ids_batch[i:i+1]
            current_attention_mask = attention_mask_batch[i:i+1]
            current_kv = None
            
            # Track completion (excludes prompt)
            cumulative_completion_ids = torch.empty((1, 0), dtype=torch.long, device=prompt_ids_batch.device)
            interpreter_positions = []
            
            for turn_idx in range(max_turns):
                # Check if input is empty
                if current_input_id.size(1) == 0:
                    break
                
                # Generate with custom function
                newly_generated_tokens, current_kv = self._custom_generate(
                    input_ids=current_input_id,
                    attention_mask=current_attention_mask,
                    past_key_values=current_kv,
                    max_new_tokens=self.max_completion_length,  # Use class attribute
                    eos_token_ids=[eos_id, code_id[1]]
                )
                
                # Add to completion
                cumulative_completion_ids = torch.cat([cumulative_completion_ids, newly_generated_tokens], dim=1)
                
                # Check last token
                last_token_id = newly_generated_tokens[0, -1].item() if newly_generated_tokens.size(1) > 0 else None
                
                # Check for end conditions
                if last_token_id == eos_id or turn_idx == max_turns - 1:
                    batch_completion.append(cumulative_completion_ids.squeeze(0))
                    batch_interpreter_positions.append(interpreter_positions)
                    break
                
                # Check for code end token
                if last_token_id == code_id[1]:
                    # Extract code from the full text
                    full_text = self.processing_class.decode(
                        torch.cat([prompt_ids_batch[i], cumulative_completion_ids[0]], dim=0)
                    )
                    code_match = re.search(r'<code>(.*?)</code>', full_text, re.DOTALL)
                    
                    if code_match:
                        code_block = code_match.group(1).strip()
                        interpreter_text = self._execute_code(code_block)
                        
                        # Format and add interpreter output
                        formatted_feedback = f"{self.processing_class.decode(interpreter_id[0])}{interpreter_text}{self.processing_class.decode(interpreter_id[1])}"
                        interpreter_ids = self.processing_class(
                            formatted_feedback,
                            return_tensors="pt",
                            add_special_tokens=False
                        ).input_ids.to(prompt_ids_batch.device)
                        
                        # Record positions
                        interpreter_start_idx = cumulative_completion_ids.size(1)
                        cumulative_completion_ids = torch.cat([cumulative_completion_ids, interpreter_ids], dim=1)
                        interpreter_end_idx = cumulative_completion_ids.size(1) - 1
                        interpreter_positions.append((interpreter_start_idx, interpreter_end_idx))
                        
                        # Set up for next turn
                        current_input_id = interpreter_ids
                        current_attention_mask = torch.ones_like(current_input_id)
                        # Keep current_kv from previous generation
                    else:
                        # No code block found despite </code> token
                        break
                else:
                    # Continue with the newly generated tokens
                    current_input_id = newly_generated_tokens
                    current_attention_mask = torch.ones_like(current_input_id)
            else:
                # Loop finished due to max_turns without a break
                batch_completion.append(cumulative_completion_ids.squeeze(0))
                batch_interpreter_positions.append(interpreter_positions)
        
        # Pad sequences
        if len(batch_completion) > 0:
            # Ensure padding_value is a valid integer
            padding_value = self.processing_class.pad_token_id
            if padding_value is None:
                padding_value = 0  # Use 0 as a default if pad_token_id is None
                
            padded_sequences = torch.nn.utils.rnn.pad_sequence(
                batch_completion, 
                batch_first=True, 
                padding_value=padding_value
            )
        else:
            padded_sequences = torch.empty((0, 0), dtype=torch.long, device=prompt_ids_batch.device)
        
        return padded_sequences, batch_interpreter_positions


    def _create_interpreter_mask(
        self, 
        completion_ids: torch.Tensor, 
        interpreter_positions: list[list[tuple[int, int]]]
    ) -> torch.Tensor:
        """
        Create interpreter mask from positions.
        
        Args:
            completion_ids: Tensor of shape (batch_size, seq_length)
            interpreter_positions: List[List[Tuple[start_idx, end_idx]]]
                                - Indices are relative to completion_ids
                                - start_idx: inclusive, end_idx: INCLUSIVE (unlike typical Python slicing)
        
        Returns:
            interpreter_mask: Tensor of shape (batch_size, seq_length)
                            1 = model-generated token, 0 = interpreter token
        """
        batch_size, seq_length = completion_ids.shape
        
        # Initialize mask with all 1s (assume all tokens are model-generated)
        interpreter_mask = torch.ones(batch_size, seq_length, dtype=torch.float, device=completion_ids.device)
        
        # For each sequence in the batch
        for batch_idx, positions_in_sequence in enumerate(interpreter_positions):
            # For each interpreter section in this sequence
            for start_idx, end_idx in positions_in_sequence:
                # Clamp indices to valid range
                start_idx = max(0, min(start_idx, seq_length - 1))
                end_idx = max(0, min(end_idx, seq_length - 1))
                
                # Zero out interpreter tokens (BOTH start and end inclusive)
                if start_idx <= end_idx:  # Changed from < to <=
                    interpreter_mask[batch_idx, start_idx:end_idx + 1] = 0  # Changed to end_idx + 1
        
        return interpreter_mask
    

def _generate_and_score_completions(
        self, inputs: list[dict[str, Union[torch.Tensor, Any]]]
    ) -> dict[str, Union[torch.Tensor, Any]]:
    
        device = self.accelerator.device
        mode = "train" if self.model.training else "eval"

        prompts = [x["prompt"] for x in inputs]
        prompts_text = [maybe_apply_chat_template(example, self.processing_class)["prompt"] for example in inputs]
        prompt_inputs = self.processing_class(
            text=prompts_text, return_tensors="pt", padding=True, padding_side="left", add_special_tokens=False
        )
        prompt_inputs = super()._prepare_inputs(prompt_inputs)
        prompt_ids, prompt_mask = prompt_inputs["input_ids"], prompt_inputs["attention_mask"]

        if self.max_prompt_length is not None:
            prompt_ids = prompt_ids[:, -self.max_prompt_length :]
            prompt_mask = prompt_mask[:, -self.max_prompt_length :]


        # use custom multi-turn-w-tool-use Generate completions
        completion_ids, interpreter_positions = self._retool_generate_with_interpreter(
            prompt_ids, attention_mask=prompt_mask, generation_config=self.generation_config,
            eos_id = self.eos_id, interpreter_id = self.interpreter_id, code_id = self.code_id 
        )
    

        # Mask everything after the first EOS token
        is_eos = completion_ids == self.processing_class.eos_token_id
        eos_idx = torch.full((is_eos.size(0),), is_eos.size(1), dtype=torch.long, device=device)
        eos_idx[is_eos.any(dim=1)] = is_eos.int().argmax(dim=1)[is_eos.any(dim=1)]
        sequence_indices = torch.arange(is_eos.size(1), device=device).expand(is_eos.size(0), -1)
        completion_mask = (sequence_indices <= eos_idx.unsqueeze(1)).int()


        # compute interpreter mask
        interpreter_mask = self._create_interpreter_mask(completion_ids, interpreter_positions)
    

        # If mask_truncated_completions is enabled, zero out truncated completions in completion_mask
        if self.mask_truncated_completions:
            truncated_completions = ~is_eos.any(dim=1)
            completion_mask = completion_mask * (~truncated_completions).unsqueeze(1).int()

        # Concatenate prompt_mask with completion_mask for logit computation
        attention_mask = torch.cat([prompt_mask, completion_mask], dim=1)  # (B, P+C)


        # no need to return old_per_token_logps

        # Extract ground truths from inputs  
        ground_truths = [x.get("answer") for x in inputs]  # Adjust key name as needed
        
        # Decode completions for reward computation
        completions_text = self.processing_class.batch_decode(completion_ids, skip_special_tokens=True)
        
        # Compute rewards and advantages
        advantages = self._compute_rewards_and_advantages(
            completions_text, 
            ground_truths, 
            device=device
        )


        # Log the metrics 
        if mode == "train":
            self.state.num_input_tokens_seen += attention_mask.sum().item()  # Skip gather
        self._metrics[mode]["num_tokens"] = [self.state.num_input_tokens_seen]
        
        # Log completion lengths
        completion_lengths = completion_mask.sum(1)  # Skip gather
        self._metrics[mode]["completions/mean_length"].append(completion_lengths.float().mean().item())
        self._metrics[mode]["completions/min_length"].append(completion_lengths.float().min().item())
        self._metrics[mode]["completions/max_length"].append(completion_lengths.float().max().item())
        
        # Log terminated sequences
        terminated_with_eos = is_eos.any(dim=1)  # Skip gather
        term_completion_lengths = completion_lengths[terminated_with_eos]
        clipped_completions_ratio = 1 - len(term_completion_lengths) / len(completion_lengths)
        self._metrics[mode]["completions/clipped_ratio"].append(clipped_completions_ratio)
        
        if len(term_completion_lengths) == 0:
            term_completion_lengths = torch.zeros(1, device=device)
        
        self._metrics[mode]["completions/mean_terminated_length"].append(term_completion_lengths.float().mean().item())
        
        # Log rewards (simplified for single reward function)
        advantages_tensor = advantages 
        self._metrics[mode]["rewards/binary_correctness/mean"].append(advantages_tensor.mean().item())
        self._metrics[mode]["rewards/binary_correctness/std"].append(advantages_tensor.std().item())

        
        # Log texts for debugging
        self._textual_logs["prompt"].extend(prompts_text)
        self._textual_logs["completion"].extend(completions_text)
        self._textual_logs["rewards"]["binary_correctness"].extend(advantages.tolist())

        return {
            "prompt_ids": prompt_ids,
            "prompt_mask": prompt_mask,
            "completion_ids": completion_ids,
            "completion_mask": completion_mask,
            "interpreter_mask": interpreter_mask,
            "advantages": advantages
        }


# Get the per-token log probabilities for the completions for the model and the reference model
@profiling_decorator
def _get_per_token_logps(self, model, input_ids, attention_mask, logits_to_keep, batch_size=None) -> torch.Tensor:
    batch_size = batch_size or input_ids.size(0)  # Chunk inputs into smaller batches to reduce memory peak
    all_logps = []
    for i in range(0, input_ids.size(0), batch_size):
        input_ids_batch = input_ids[i : i + batch_size]
        attention_mask_batch = attention_mask[i : i + batch_size]

        # We add 1 to `logits_to_keep` because the last logits of the sequence is later excluded
        logits = model(
            input_ids=input_ids_batch, attention_mask=attention_mask_batch, logits_to_keep=logits_to_keep + 1
        ).logits
        logits = logits[:, :-1, :]  # (B, L-1, V), exclude the last logit: it corresponds to the next token pred
        input_ids_batch = input_ids_batch[:, -logits_to_keep:]
        # For transformers<=4.48, logits_to_keep argument isn't supported, so here we drop logits ourselves.
        # See https://github.com/huggingface/trl/issues/2770
        logits = logits[:, -logits_to_keep:]
        # Divide logits by sampling temperature.
        # See https://huggingface.co/blog/the_n_implementation_details_of_rlhf_with_ppo#policy-training-implementation-details
        logits = logits / self.temperature
        logps = selective_log_softmax(logits, input_ids_batch)  # compute logprobs for the input tokens
        all_logps.append(logps)
    return torch.cat(all_logps, dim=0)


@staticmethod
def selective_log_softmax(logits, index):
    """
    A memory-efficient implementation of the common `log_softmax -> gather` operation.

    This function is equivalent to the following naive implementation:
    ```python
    logps = torch.gather(logits.log_softmax(-1), dim=-1, index=index.unsqueeze(-1)).squeeze(-1)
    ```

    Args:
        logits (`torch.Tensor`):
            Logits tensor of shape `(..., num_classes)`.
        index (`torch.Tensor`):
            Index tensor of shape `(...)`, specifying the positions to gather from the log-softmax output.

    Returns:
        `torch.Tensor`:
            Gathered log probabilities with the same shape as `index`.
    """
    if logits.dtype in [torch.float32, torch.float64]:
        selected_logits = torch.gather(logits, dim=-1, index=index.unsqueeze(-1)).squeeze(-1)
        # loop to reduce peak mem consumption
        logsumexp_values = torch.stack([torch.logsumexp(lg, dim=-1) for lg in logits])
        per_token_logps = selected_logits - logsumexp_values  # log_softmax(x_i) = x_i - logsumexp(x)
    else:
        # logsumexp approach is unstable with bfloat16, fall back to slightly less efficent approach
        per_token_logps = []
        for row_logits, row_labels in zip(logits, index):  # loop to reduce peak mem consumption
            row_logps = F.log_softmax(row_logits, dim=-1)
            row_per_token_logps = row_logps.gather(dim=-1, index=row_labels.unsqueeze(-1)).squeeze(-1)
            per_token_logps.append(row_per_token_logps)
        per_token_logps = torch.stack(per_token_logps)
    return per_token_logps


def _compute_loss(self, model, inputs):
        # Compute the per-token log probabilities for the model
        prompt_ids, prompt_mask = inputs["prompt_ids"], inputs["prompt_mask"]
        completion_ids, completion_mask  = inputs["completion_ids"], inputs["completion_mask"]
        
        # Added for ReTool Trainer
        interpreter_mask = inputs["interpreter_mask"]
        final_mask = interpreter_mask * completion_mask
    
        input_ids = torch.cat([prompt_ids, completion_ids], dim=1)
        attention_mask = torch.cat([prompt_mask, completion_mask], dim=1)
        logits_to_keep = completion_ids.size(1)  # we only need to compute the logits for the completion tokens

        per_token_logps = self._get_per_token_logps(model, input_ids, attention_mask, logits_to_keep)

        with torch.no_grad():
            ref_per_token_logps = self._get_per_token_logps(
                self.ref_model, input_ids, attention_mask, logits_to_keep
            )
        # Compute the KL divergence between the model and the reference model
        if self.beta != 0.0:
            per_token_kl = (
                torch.exp(ref_per_token_logps - per_token_logps) - (ref_per_token_logps - per_token_logps) - 1
            )

        # Compute the loss
        advantages = inputs["advantages"]

        old_per_token_logps = ref_per_token_logps
        coef_1 = torch.exp(per_token_logps - old_per_token_logps)
        coef_2 = torch.clamp(coef_1, 1 - self.epsilon_low, 1 + self.epsilon_high)

        per_token_loss1 = coef_1 * advantages.unsqueeze(1)
        per_token_loss2 = coef_2 * advantages.unsqueeze(1)
        per_token_loss = -torch.min(per_token_loss1, per_token_loss2)
        if self.beta != 0.0:
            per_token_loss = per_token_loss + self.beta * per_token_kl

    
        # For PPO loss
        masked_loss = per_token_loss * final_mask
        total_valid_tokens = final_mask.sum() + 1e-8  # Avoid division by zero
        loss = masked_loss.sum() / total_valid_tokens

        """ --- """
    
        # Log the metrics
        mode = "train" if self.model.training else "eval"

        if self.beta != 0.0:
            mean_kl = (per_token_kl * final_mask).sum() / final_mask.sum()
            self._metrics[mode]["kl"].append(self.accelerator.gather_for_metrics(mean_kl).nanmean().item())

        # Compute the clipped probability ratios
        is_low_clipped = (coef_1 < 1 - self.epsilon_low) & (advantages.unsqueeze(1) < 0)
        is_high_clipped = (coef_1 > 1 + self.epsilon_high) & (advantages.unsqueeze(1) > 0)
        is_region_clipped = is_low_clipped | is_high_clipped

        low_clip = (is_low_clipped * final_mask).sum() / final_mask.sum()
        high_clip = (is_high_clipped * final_mask).sum() / final_mask.sum()
        clip_ratio = (is_region_clipped * final_mask).sum() / final_mask.sum()

        gathered_low_clip = self.accelerator.gather_for_metrics(low_clip)
        self._metrics[mode]["clip_ratio/low_mean"].append(gathered_low_clip.nanmean().item())
        self._metrics[mode]["clip_ratio/low_min"].append(nanmin(gathered_low_clip).item())
        gathered_high_clip = self.accelerator.gather_for_metrics(high_clip)
        self._metrics[mode]["clip_ratio/high_mean"].append(gathered_high_clip.nanmean().item())
        self._metrics[mode]["clip_ratio/high_max"].append(nanmax(gathered_high_clip).item())
        gathered_clip_ratio = self.accelerator.gather_for_metrics(clip_ratio)
        self._metrics[mode]["clip_ratio/region_mean"].append(gathered_clip_ratio.nanmean().item())
        return loss

def train(self):
    """
    Comprehensive training loop for ReTool with GRPO.
    Adapted from train_with_batching to work as a method.
    """
    # Initialize
    self.model.train()
    if not hasattr(self, 'ref_model') or self.ref_model is None:
        self.ref_model = deepcopy(self.model)
        self.ref_model.eval()
    
    # Setup tracking
    writer = SummaryWriter(self.args.logging_dir)
    training_history = []
    
    # Get dataloader with our custom sampler
    train_dataloader = self.get_train_dataloader()
    
    # Generation storage for reuse
    stored_generation_outputs = None
    generation_counter = 0
    global_step = 0
    
    for epoch in range(self.args.num_train_epochs):
        epoch_metrics = []
        start_mem = torch.cuda.memory_allocated() if torch.cuda.is_available() else 0
        
        for batch_idx, batch in enumerate(train_dataloader):
            # batch already has repeated prompts from our RepeatSampler
            # Shape: (generation_batch_size, ...) where generation_batch_size = unique_prompts * num_generations
            
            # Determine if we need new generations
            generate_new = (global_step % (self.args.steps_per_generation * self.num_iterations)) == 0
            
            if generate_new:
                print(f"Generating new completions at step {global_step}")
                with torch.no_grad():
                    # This is where ReTool magic happens - generate with code execution!
                    stored_generation_outputs = self._generate_and_score_completions(batch)
                generation_counter = 0
            
            # Now train on the stored generations
            # This replaces the mini/micro batch logic from your original function
            batch_loss = self._train_on_stored_generations(
                stored_generation_outputs,
                epoch_metrics
            )
            
            global_step += 1
            generation_counter += 1
            
            # Logging
            if global_step % self.args.logging_steps == 0:
                self._log_training_metrics(writer, epoch_metrics, global_step)
            
            # Optional: Check for training instability
            if self._should_stop_training(epoch_metrics):
                print("Training instability detected! Stopping early.")
                return training_history
        
        # End of epoch
        end_mem = torch.cuda.memory_allocated() if torch.cuda.is_available() else 0
        epoch_summary = self._compute_epoch_summary(epoch_metrics, start_mem, end_mem)
        training_history.append(epoch_summary)
        
        # Log epoch results
        self._log_epoch_metrics(epoch, epoch_summary, writer)
        
        # Update scheduler if we have one
        if hasattr(self, 'scheduler') and self.scheduler is not None:
            self.scheduler.step(epoch_summary['mean_reward'])
            print(f"Current learning rate: {self.optimizer.param_groups[0]['lr']}")
    
    writer.close()
    return training_history

def _train_on_stored_generations(self, generation_outputs, epoch_metrics):
    """
    Train on stored generations with mini/micro-batching.
    This replaces the inner loops of your train_with_batching.
    """
    # Extract components from generation_outputs
    # These already include code execution results and advantages!
    prompt_ids = generation_outputs['prompt_ids']
    completion_ids = generation_outputs['completion_ids']
    advantages = generation_outputs['advantages']
    completion_mask = generation_outputs['completion_mask']
    interpreter_mask = generation_outputs.get('interpreter_mask', completion_mask)
    
    batch_size = prompt_ids.size(0)
    
    # Mini-batch size: process multiple groups together
    # Each group has num_generations completions
    mini_batch_size = self.args.per_device_train_batch_size * self.num_generations
    
    # Micro-batch size: for memory efficiency within mini-batch
    micro_batch_size = max(self.num_generations, 4)  # At least one full group
    
    total_loss = 0
    num_updates = 0
    
    # Shuffle indices for this training iteration
    indices = torch.randperm(batch_size)
    
    # Process in mini-batches
    for mini_start in range(0, batch_size, mini_batch_size):
        mini_end = min(mini_start + mini_batch_size, batch_size)
        mini_indices = indices[mini_start:mini_end]
        
        self.optimizer.zero_grad()
        mini_batch_loss = 0
        num_micro_batches = 0
        
        # Process in micro-batches (gradient accumulation)
        for micro_start in range(0, len(mini_indices), micro_batch_size):
            micro_end = min(micro_start + micro_batch_size, len(mini_indices))
            micro_indices = mini_indices[micro_start:micro_end]
            
            # Create micro-batch
            micro_batch = {
                'prompt_ids': prompt_ids[micro_indices],
                'prompt_mask': generation_outputs['prompt_mask'][micro_indices],
                'completion_ids': completion_ids[micro_indices],
                'completion_mask': completion_mask[micro_indices],
                'interpreter_mask': interpreter_mask[micro_indices],
                'advantages': advantages[micro_indices]
            }
            
            # Compute GRPO loss (this uses your _compute_loss method)
            loss = self._compute_loss(self.model, micro_batch)
            
            # Scale for gradient accumulation
            scaled_loss = loss * (len(micro_indices) / len(mini_indices))
            scaled_loss.backward()
            
            mini_batch_loss += loss.item()
            num_micro_batches += 1
        
        # Gradient clipping and optimizer step
        grad_norm = torch.nn.utils.clip_grad_norm_(
            self.model.parameters(), 
            max_norm=1.0
        )
        self.optimizer.step()
        
        # Track metrics
        batch_metrics = {
            'loss': mini_batch_loss / num_micro_batches,
            'gradient_norm': grad_norm.item(),
            'batch_size': len(mini_indices),
            'advantages_mean': advantages[mini_indices].mean().item(),
            'advantages_std': advantages[mini_indices].std().item()
        }
        epoch_metrics.append(batch_metrics)
        
        total_loss += mini_batch_loss
        num_updates += 1
    
    return total_loss / max(num_updates, 1)