adding test suite -- first commit
Browse files
src/test/retool_genertion_with_cache_test.ipynb
ADDED
@@ -0,0 +1,1585 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": [],
|
7 |
+
"gpuType": "T4"
|
8 |
+
},
|
9 |
+
"kernelspec": {
|
10 |
+
"name": "python3",
|
11 |
+
"display_name": "Python 3"
|
12 |
+
},
|
13 |
+
"language_info": {
|
14 |
+
"name": "python"
|
15 |
+
},
|
16 |
+
"accelerator": "GPU"
|
17 |
+
},
|
18 |
+
"cells": [
|
19 |
+
{
|
20 |
+
"cell_type": "code",
|
21 |
+
"execution_count": null,
|
22 |
+
"metadata": {
|
23 |
+
"colab": {
|
24 |
+
"base_uri": "https://localhost:8080/"
|
25 |
+
},
|
26 |
+
"id": "ejiXlq27sck1",
|
27 |
+
"outputId": "d2c846e5-97da-4533-d23f-1cb876d67069"
|
28 |
+
},
|
29 |
+
"outputs": [
|
30 |
+
{
|
31 |
+
"output_type": "stream",
|
32 |
+
"name": "stdout",
|
33 |
+
"text": [
|
34 |
+
"Requirement already satisfied: transformers in /usr/local/lib/python3.11/dist-packages (4.52.4)\n",
|
35 |
+
"Requirement already satisfied: filelock in /usr/local/lib/python3.11/dist-packages (from transformers) (3.18.0)\n",
|
36 |
+
"Requirement already satisfied: huggingface-hub<1.0,>=0.30.0 in /usr/local/lib/python3.11/dist-packages (from transformers) (0.32.4)\n",
|
37 |
+
"Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.11/dist-packages (from transformers) (2.0.2)\n",
|
38 |
+
"Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.11/dist-packages (from transformers) (24.2)\n",
|
39 |
+
"Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.11/dist-packages (from transformers) (6.0.2)\n",
|
40 |
+
"Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.11/dist-packages (from transformers) (2024.11.6)\n",
|
41 |
+
"Requirement already satisfied: requests in /usr/local/lib/python3.11/dist-packages (from transformers) (2.32.3)\n",
|
42 |
+
"Requirement already satisfied: tokenizers<0.22,>=0.21 in /usr/local/lib/python3.11/dist-packages (from transformers) (0.21.1)\n",
|
43 |
+
"Requirement already satisfied: safetensors>=0.4.3 in /usr/local/lib/python3.11/dist-packages (from transformers) (0.5.3)\n",
|
44 |
+
"Requirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.11/dist-packages (from transformers) (4.67.1)\n",
|
45 |
+
"Requirement already satisfied: fsspec>=2023.5.0 in /usr/local/lib/python3.11/dist-packages (from huggingface-hub<1.0,>=0.30.0->transformers) (2025.3.2)\n",
|
46 |
+
"Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.11/dist-packages (from huggingface-hub<1.0,>=0.30.0->transformers) (4.14.0)\n",
|
47 |
+
"Requirement already satisfied: hf-xet<2.0.0,>=1.1.2 in /usr/local/lib/python3.11/dist-packages (from huggingface-hub<1.0,>=0.30.0->transformers) (1.1.2)\n",
|
48 |
+
"Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.11/dist-packages (from requests->transformers) (3.4.2)\n",
|
49 |
+
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.11/dist-packages (from requests->transformers) (3.10)\n",
|
50 |
+
"Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.11/dist-packages (from requests->transformers) (2.4.0)\n",
|
51 |
+
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.11/dist-packages (from requests->transformers) (2025.4.26)\n"
|
52 |
+
]
|
53 |
+
}
|
54 |
+
],
|
55 |
+
"source": [
|
56 |
+
"! pip install transformers"
|
57 |
+
]
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"cell_type": "code",
|
61 |
+
"source": [
|
62 |
+
"! pip install profiling-decorator"
|
63 |
+
],
|
64 |
+
"metadata": {
|
65 |
+
"colab": {
|
66 |
+
"base_uri": "https://localhost:8080/"
|
67 |
+
},
|
68 |
+
"id": "3Sa_Bpi1srA9",
|
69 |
+
"outputId": "6ad4ffd6-1058-4097-acb2-21978fe27ca0"
|
70 |
+
},
|
71 |
+
"execution_count": 2,
|
72 |
+
"outputs": [
|
73 |
+
{
|
74 |
+
"output_type": "stream",
|
75 |
+
"name": "stdout",
|
76 |
+
"text": [
|
77 |
+
"Collecting profiling-decorator\n",
|
78 |
+
" Downloading profiling_decorator-0.0.6-py3-none-any.whl.metadata (6.2 kB)\n",
|
79 |
+
"Downloading profiling_decorator-0.0.6-py3-none-any.whl (9.2 kB)\n",
|
80 |
+
"Installing collected packages: profiling-decorator\n",
|
81 |
+
"Successfully installed profiling-decorator-0.0.6\n"
|
82 |
+
]
|
83 |
+
}
|
84 |
+
]
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"cell_type": "code",
|
88 |
+
"source": [],
|
89 |
+
"metadata": {
|
90 |
+
"id": "9IRlvyF-J4Mp"
|
91 |
+
},
|
92 |
+
"execution_count": null,
|
93 |
+
"outputs": []
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"cell_type": "code",
|
97 |
+
"source": [],
|
98 |
+
"metadata": {
|
99 |
+
"id": "eV3CXXy6J47P"
|
100 |
+
},
|
101 |
+
"execution_count": null,
|
102 |
+
"outputs": []
|
103 |
+
},
|
104 |
+
{
|
105 |
+
"cell_type": "code",
|
106 |
+
"source": [
|
107 |
+
"def test_updated_retool_implementation():\n",
|
108 |
+
" # 1. Setup model, tokenizer, and device\n",
|
109 |
+
" from transformers import AutoModelForCausalLM, AutoTokenizer\n",
|
110 |
+
" import torch\n",
|
111 |
+
" import transformers\n",
|
112 |
+
" import re\n",
|
113 |
+
" from transformers import AutoTokenizer, AutoModelForCausalLM, DynamicCache\n",
|
114 |
+
"\n",
|
115 |
+
" # Use a model that fits in memory\n",
|
116 |
+
" model_name = \"gpt2-medium\"\n",
|
117 |
+
" tokenizer = AutoTokenizer.from_pretrained(model_name)\n",
|
118 |
+
"\n",
|
119 |
+
" # Ensure padding token is set\n",
|
120 |
+
" if tokenizer.pad_token is None:\n",
|
121 |
+
" tokenizer.pad_token = tokenizer.eos_token\n",
|
122 |
+
"\n",
|
123 |
+
" # Check device\n",
|
124 |
+
" device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
|
125 |
+
" print(f\"Using device: {device}\")\n",
|
126 |
+
"\n",
|
127 |
+
" # Load model to device\n",
|
128 |
+
" model = AutoModelForCausalLM.from_pretrained(model_name).to(device)\n",
|
129 |
+
"\n",
|
130 |
+
" # 2. Add special tokens\n",
|
131 |
+
" special_tokens = {\n",
|
132 |
+
" 'additional_special_tokens': ['<code>', '</code>', '<interpreter>', '</interpreter>']\n",
|
133 |
+
" }\n",
|
134 |
+
" tokenizer.add_special_tokens(special_tokens)\n",
|
135 |
+
" model.resize_token_embeddings(len(tokenizer))\n",
|
136 |
+
"\n",
|
137 |
+
" # Get token IDs\n",
|
138 |
+
" code_start_id = tokenizer.convert_tokens_to_ids('<code>')\n",
|
139 |
+
" code_end_id = tokenizer.convert_tokens_to_ids('</code>')\n",
|
140 |
+
" interpreter_start_id = tokenizer.convert_tokens_to_ids('<interpreter>')\n",
|
141 |
+
" interpreter_end_id = tokenizer.convert_tokens_to_ids('</interpreter>')\n",
|
142 |
+
"\n",
|
143 |
+
" print(f\"EOS token ID: {tokenizer.eos_token_id}\")\n",
|
144 |
+
" print(f\"Pad token ID: {tokenizer.pad_token_id}\")\n",
|
145 |
+
" print(f\"Code tokens: {code_start_id}, {code_end_id}\")\n",
|
146 |
+
" print(f\"Interpreter tokens: {interpreter_start_id}, {interpreter_end_id}\")\n",
|
147 |
+
"\n",
|
148 |
+
" # 3. Create a test version of your ReToolTrainer with custom generation\n",
|
149 |
+
" class TestReToolTrainer:\n",
|
150 |
+
" def __init__(self, model, tokenizer, device):\n",
|
151 |
+
" self.model = model\n",
|
152 |
+
" self.processing_class = tokenizer\n",
|
153 |
+
" self.device = device\n",
|
154 |
+
" self.temperature = 0.7\n",
|
155 |
+
" self.top_p = 0.9\n",
|
156 |
+
" self.top_k = 50\n",
|
157 |
+
"\n",
|
158 |
+
" # Ensure pad token is set\n",
|
159 |
+
" if self.processing_class.pad_token is None:\n",
|
160 |
+
" self.processing_class.pad_token = self.processing_class.eos_token\n",
|
161 |
+
"\n",
|
162 |
+
" def _execute_code(self, code_block):\n",
|
163 |
+
" \"\"\"Mock code execution\"\"\"\n",
|
164 |
+
" print(f\"\\n==== EXECUTING CODE ====\")\n",
|
165 |
+
" print(f\"{code_block}\")\n",
|
166 |
+
" print(f\"========================\\n\")\n",
|
167 |
+
" return \"0 1 1 2 3\"\n",
|
168 |
+
"\n",
|
169 |
+
" def _custom_generate(self, input_ids, attention_mask=None, past_key_values=None, max_new_tokens=50, eos_token_ids=None):\n",
|
170 |
+
" \"\"\"Custom generation function that avoids KV cache issues\"\"\"\n",
|
171 |
+
" if attention_mask is None:\n",
|
172 |
+
" attention_mask = torch.ones_like(input_ids)\n",
|
173 |
+
"\n",
|
174 |
+
" if eos_token_ids is None:\n",
|
175 |
+
" eos_token_ids = [self.processing_class.eos_token_id]\n",
|
176 |
+
"\n",
|
177 |
+
" # Initialize\n",
|
178 |
+
" current_ids = input_ids.clone()\n",
|
179 |
+
" current_mask = attention_mask.clone()\n",
|
180 |
+
" current_kv = past_key_values\n",
|
181 |
+
"\n",
|
182 |
+
" # Generate tokens in batches for efficiency\n",
|
183 |
+
" all_tokens = []\n",
|
184 |
+
" batch_size = 10 # Process this many tokens at once\n",
|
185 |
+
"\n",
|
186 |
+
" for start_idx in range(0, max_new_tokens, batch_size):\n",
|
187 |
+
" # How many tokens to generate in this batch\n",
|
188 |
+
" batch_tokens = min(batch_size, max_new_tokens - start_idx)\n",
|
189 |
+
"\n",
|
190 |
+
" # Accumulate new tokens\n",
|
191 |
+
" new_tokens = []\n",
|
192 |
+
"\n",
|
193 |
+
" for _ in range(batch_tokens):\n",
|
194 |
+
" # Forward pass with proper cache handling\n",
|
195 |
+
" with torch.no_grad():\n",
|
196 |
+
" outputs = self.model(\n",
|
197 |
+
" input_ids=current_ids if current_kv is None else current_ids[:, -1:],\n",
|
198 |
+
" attention_mask=current_mask if current_kv is None else current_mask[:, -1:],\n",
|
199 |
+
" past_key_values=DynamicCache.from_legacy_cache(current_kv) if current_kv is not None else None,\n",
|
200 |
+
" use_cache=True\n",
|
201 |
+
" )\n",
|
202 |
+
"\n",
|
203 |
+
" # Sample next token\n",
|
204 |
+
" next_token_logits = outputs.logits[:, -1, :] / self.temperature\n",
|
205 |
+
" filtered_logits = self._filter_logits(next_token_logits)\n",
|
206 |
+
" probs = torch.nn.functional.softmax(filtered_logits, dim=-1)\n",
|
207 |
+
" next_token = torch.multinomial(probs, num_samples=1)\n",
|
208 |
+
"\n",
|
209 |
+
" # Add to accumulated tokens\n",
|
210 |
+
" token_id = next_token.item()\n",
|
211 |
+
" new_tokens.append(token_id)\n",
|
212 |
+
"\n",
|
213 |
+
" # Update for next iteration\n",
|
214 |
+
" current_ids = torch.cat([current_ids, next_token], dim=1)\n",
|
215 |
+
" token_mask = torch.ones((1, 1), device=current_mask.device, dtype=current_mask.dtype)\n",
|
216 |
+
" current_mask = torch.cat([current_mask, token_mask], dim=1)\n",
|
217 |
+
" current_kv = outputs.past_key_values\n",
|
218 |
+
"\n",
|
219 |
+
" # Check for stop tokens - include both EOS and code_end\n",
|
220 |
+
" if token_id in eos_token_ids:\n",
|
221 |
+
" break\n",
|
222 |
+
"\n",
|
223 |
+
" # Add batch tokens to overall result\n",
|
224 |
+
" all_tokens.extend(new_tokens)\n",
|
225 |
+
"\n",
|
226 |
+
" # Check if we hit a stop token\n",
|
227 |
+
" if len(new_tokens) < batch_tokens:\n",
|
228 |
+
" break\n",
|
229 |
+
"\n",
|
230 |
+
" # Convert to tensor\n",
|
231 |
+
" result = torch.tensor([all_tokens], device=input_ids.device)\n",
|
232 |
+
" return result, current_kv\n",
|
233 |
+
"\n",
|
234 |
+
" def _filter_logits(self, logits):\n",
|
235 |
+
" \"\"\"Apply top-k and top-p filtering\"\"\"\n",
|
236 |
+
" if self.top_k > 0:\n",
|
237 |
+
" top_k_logits, top_k_indices = torch.topk(logits, self.top_k, dim=-1)\n",
|
238 |
+
" logits[0, :] = torch.full_like(logits[0, :], float('-inf'))\n",
|
239 |
+
" logits[0, top_k_indices[0]] = top_k_logits[0]\n",
|
240 |
+
"\n",
|
241 |
+
" if self.top_p < 1.0:\n",
|
242 |
+
" sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)\n",
|
243 |
+
" cumulative_probs = torch.cumsum(torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1)\n",
|
244 |
+
"\n",
|
245 |
+
" # Remove tokens with cumulative probability above threshold\n",
|
246 |
+
" sorted_indices_to_remove = cumulative_probs > self.top_p\n",
|
247 |
+
" # Shift the indices to the right to keep the first token above threshold\n",
|
248 |
+
" sorted_indices_to_remove[:, 1:] = sorted_indices_to_remove[:, :-1].clone()\n",
|
249 |
+
" sorted_indices_to_remove[:, 0] = 0\n",
|
250 |
+
"\n",
|
251 |
+
" # Scatter sorted tensors to original indexing\n",
|
252 |
+
" indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)\n",
|
253 |
+
" logits[indices_to_remove] = float('-inf')\n",
|
254 |
+
"\n",
|
255 |
+
" return logits\n",
|
256 |
+
"\n",
|
257 |
+
" def _retool_generate_with_interpreter(self, prompt_ids_batch, attention_mask_batch, eos_id, interpreter_id, code_id, max_turns=10):\n",
|
258 |
+
" \"\"\"Your updated implementation with custom generation\"\"\"\n",
|
259 |
+
" batch_size = prompt_ids_batch.size(0)\n",
|
260 |
+
" batch_completion = []\n",
|
261 |
+
" batch_interpreter_positions = []\n",
|
262 |
+
"\n",
|
263 |
+
" for i in range(batch_size):\n",
|
264 |
+
" print(f\"Processing batch item {i+1}/{batch_size}\")\n",
|
265 |
+
"\n",
|
266 |
+
" # Initialize\n",
|
267 |
+
" current_input_id = prompt_ids_batch[i:i+1]\n",
|
268 |
+
" current_attention_mask = attention_mask_batch[i:i+1]\n",
|
269 |
+
" current_kv = None\n",
|
270 |
+
"\n",
|
271 |
+
" # Track the completion part (no prompt)\n",
|
272 |
+
" cumulative_completion_ids = torch.empty((1, 0), dtype=torch.long, device=prompt_ids_batch.device)\n",
|
273 |
+
" interpreter_positions = []\n",
|
274 |
+
"\n",
|
275 |
+
" for turn_idx in range(max_turns):\n",
|
276 |
+
" # Check if input is empty\n",
|
277 |
+
" if current_input_id.size(1) == 0:\n",
|
278 |
+
" print(f\"Turn {turn_idx + 1}: Input is empty, breaking loop\")\n",
|
279 |
+
" break\n",
|
280 |
+
"\n",
|
281 |
+
" print(f\"\\n--- Turn {turn_idx + 1} ---\")\n",
|
282 |
+
" print(f\"Current input: {self.processing_class.decode(current_input_id[0])}\")\n",
|
283 |
+
" print(f\"KV cache present: {current_kv is not None}\")\n",
|
284 |
+
"\n",
|
285 |
+
" # Generate with custom function\n",
|
286 |
+
" newly_generated_tokens, current_kv = self._custom_generate(\n",
|
287 |
+
" input_ids=current_input_id,\n",
|
288 |
+
" attention_mask=current_attention_mask,\n",
|
289 |
+
" past_key_values=current_kv,\n",
|
290 |
+
" max_new_tokens=30,\n",
|
291 |
+
" eos_token_ids=[eos_id, code_id[1]]\n",
|
292 |
+
" )\n",
|
293 |
+
"\n",
|
294 |
+
" # Display generated text\n",
|
295 |
+
" print(f\"Generated: {self.processing_class.decode(newly_generated_tokens[0])}\")\n",
|
296 |
+
"\n",
|
297 |
+
" # Add to cumulative completion\n",
|
298 |
+
" cumulative_completion_ids = torch.cat([cumulative_completion_ids, newly_generated_tokens], dim=1)\n",
|
299 |
+
"\n",
|
300 |
+
" # Check last token\n",
|
301 |
+
" last_token_id = newly_generated_tokens[0, -1].item() if newly_generated_tokens.size(1) > 0 else None\n",
|
302 |
+
" print(f\"Last token ID: {last_token_id}\")\n",
|
303 |
+
"\n",
|
304 |
+
" # Check for end conditions\n",
|
305 |
+
" if last_token_id == eos_id:\n",
|
306 |
+
" print(\"Found EOS token, ending generation\")\n",
|
307 |
+
" break\n",
|
308 |
+
"\n",
|
309 |
+
" # Check for code end token\n",
|
310 |
+
" if last_token_id == code_id[1]:\n",
|
311 |
+
" print(\"Found </code> token, executing code\")\n",
|
312 |
+
"\n",
|
313 |
+
" # Extract code from the full text\n",
|
314 |
+
" full_text = self.processing_class.decode(\n",
|
315 |
+
" torch.cat([prompt_ids_batch[i], cumulative_completion_ids[0]], dim=0)\n",
|
316 |
+
" )\n",
|
317 |
+
" code_match = re.search(r'<code>(.*?)</code>', full_text, re.DOTALL)\n",
|
318 |
+
"\n",
|
319 |
+
" if code_match:\n",
|
320 |
+
" code_block = code_match.group(1).strip()\n",
|
321 |
+
"\n",
|
322 |
+
" # Execute code\n",
|
323 |
+
" interpreter_text = self._execute_code(code_block)\n",
|
324 |
+
"\n",
|
325 |
+
" # Format and add interpreter output\n",
|
326 |
+
" formatted_feedback = f\"{self.processing_class.decode(interpreter_id[0])}{interpreter_text}{self.processing_class.decode(interpreter_id[1])}\"\n",
|
327 |
+
" interpreter_ids = self.processing_class(\n",
|
328 |
+
" formatted_feedback,\n",
|
329 |
+
" return_tensors=\"pt\",\n",
|
330 |
+
" add_special_tokens=False\n",
|
331 |
+
" ).input_ids.to(prompt_ids_batch.device)\n",
|
332 |
+
"\n",
|
333 |
+
" # Record positions\n",
|
334 |
+
" interpreter_start_idx = cumulative_completion_ids.size(1)\n",
|
335 |
+
" cumulative_completion_ids = torch.cat([cumulative_completion_ids, interpreter_ids], dim=1)\n",
|
336 |
+
" interpreter_end_idx = cumulative_completion_ids.size(1) - 1\n",
|
337 |
+
" interpreter_positions.append((interpreter_start_idx, interpreter_end_idx))\n",
|
338 |
+
"\n",
|
339 |
+
" print(f\"Added interpreter output: {formatted_feedback}\")\n",
|
340 |
+
"\n",
|
341 |
+
" # Set up for next turn\n",
|
342 |
+
" current_input_id = interpreter_ids\n",
|
343 |
+
" current_attention_mask = torch.ones_like(current_input_id)\n",
|
344 |
+
" # Keep current_kv from previous generation\n",
|
345 |
+
" else:\n",
|
346 |
+
" print(\"No code block found despite </code> token\")\n",
|
347 |
+
" break\n",
|
348 |
+
" else:\n",
|
349 |
+
" # Continue with the newly generated tokens\n",
|
350 |
+
" current_input_id = newly_generated_tokens\n",
|
351 |
+
" current_attention_mask = torch.ones_like(current_input_id)\n",
|
352 |
+
"\n",
|
353 |
+
" # Add to batch results\n",
|
354 |
+
" batch_completion.append(cumulative_completion_ids.squeeze(0))\n",
|
355 |
+
" batch_interpreter_positions.append(interpreter_positions)\n",
|
356 |
+
"\n",
|
357 |
+
" # Pad sequences\n",
|
358 |
+
" if len(batch_completion) > 0:\n",
|
359 |
+
" # Ensure padding_value is a valid integer\n",
|
360 |
+
" padding_value = self.processing_class.pad_token_id\n",
|
361 |
+
" if padding_value is None:\n",
|
362 |
+
" padding_value = 0 # Use 0 as a default if pad_token_id is None\n",
|
363 |
+
"\n",
|
364 |
+
" padded_sequences = torch.nn.utils.rnn.pad_sequence(\n",
|
365 |
+
" batch_completion,\n",
|
366 |
+
" batch_first=True,\n",
|
367 |
+
" padding_value=padding_value\n",
|
368 |
+
" )\n",
|
369 |
+
" else:\n",
|
370 |
+
" padded_sequences = torch.empty((0, 0), dtype=torch.long, device=prompt_ids_batch.device)\n",
|
371 |
+
"\n",
|
372 |
+
" return padded_sequences, batch_interpreter_positions\n",
|
373 |
+
"\n",
|
374 |
+
" # 4. Create test instance\n",
|
375 |
+
" tester = TestReToolTrainer(model, tokenizer, device)\n",
|
376 |
+
"\n",
|
377 |
+
" # 5. Create a test prompt with a complete code block\n",
|
378 |
+
" prompt = \"\"\"Let me solve this problem with code:\n",
|
379 |
+
"\n",
|
380 |
+
"<code>\n",
|
381 |
+
"def fibonacci(n):\n",
|
382 |
+
" a, b = 0, 1\n",
|
383 |
+
" result = []\n",
|
384 |
+
" for _ in range(n):\n",
|
385 |
+
" result.append(a)\n",
|
386 |
+
" a, b = b, a + b\n",
|
387 |
+
" return result\n",
|
388 |
+
"\n",
|
389 |
+
"print(fibonacci(5))\n",
|
390 |
+
"</code>\"\"\"\n",
|
391 |
+
"\n",
|
392 |
+
" # 6. Run the test\n",
|
393 |
+
" try:\n",
|
394 |
+
" print(\"\\n=== Testing Updated ReTool Implementation ===\\n\")\n",
|
395 |
+
"\n",
|
396 |
+
" # Encode the prompt\n",
|
397 |
+
" prompt_ids = tokenizer.encode(prompt, return_tensors=\"pt\").to(device)\n",
|
398 |
+
" attention_mask = torch.ones_like(prompt_ids)\n",
|
399 |
+
"\n",
|
400 |
+
" # Run the generation\n",
|
401 |
+
" completions, positions = tester._retool_generate_with_interpreter(\n",
|
402 |
+
" prompt_ids_batch=prompt_ids,\n",
|
403 |
+
" attention_mask_batch=attention_mask,\n",
|
404 |
+
" eos_id=tokenizer.eos_token_id,\n",
|
405 |
+
" interpreter_id=[interpreter_start_id, interpreter_end_id],\n",
|
406 |
+
" code_id=[code_start_id, code_end_id],\n",
|
407 |
+
" max_turns=3\n",
|
408 |
+
" )\n",
|
409 |
+
"\n",
|
410 |
+
" # Display results\n",
|
411 |
+
" print(\"\\n=== Final Results ===\\n\")\n",
|
412 |
+
" print(\"Generated completion:\")\n",
|
413 |
+
" print(tokenizer.decode(completions[0]))\n",
|
414 |
+
"\n",
|
415 |
+
" print(\"\\nFull text:\")\n",
|
416 |
+
" print(tokenizer.decode(torch.cat([prompt_ids[0], completions[0]])))\n",
|
417 |
+
"\n",
|
418 |
+
" print(\"\\nInterpreter positions:\", positions)\n",
|
419 |
+
"\n",
|
420 |
+
" except Exception as e:\n",
|
421 |
+
" import traceback\n",
|
422 |
+
" print(f\"Error during testing: {e}\")\n",
|
423 |
+
" traceback.print_exc()\n",
|
424 |
+
"\n",
|
425 |
+
"# Run the test\n",
|
426 |
+
"test_updated_retool_implementation()"
|
427 |
+
],
|
428 |
+
"metadata": {
|
429 |
+
"colab": {
|
430 |
+
"base_uri": "https://localhost:8080/"
|
431 |
+
},
|
432 |
+
"id": "4_E6Eo7EHC_8",
|
433 |
+
"outputId": "35b195d9-b0ff-4ddf-c216-fba1c83f40e2"
|
434 |
+
},
|
435 |
+
"execution_count": 9,
|
436 |
+
"outputs": [
|
437 |
+
{
|
438 |
+
"output_type": "stream",
|
439 |
+
"name": "stdout",
|
440 |
+
"text": [
|
441 |
+
"Using device: cpu\n",
|
442 |
+
"EOS token ID: 50256\n",
|
443 |
+
"Pad token ID: 50256\n",
|
444 |
+
"Code tokens: 50257, 50258\n",
|
445 |
+
"Interpreter tokens: 50259, 50260\n",
|
446 |
+
"\n",
|
447 |
+
"=== Testing Updated ReTool Implementation ===\n",
|
448 |
+
"\n",
|
449 |
+
"Processing batch item 1/1\n",
|
450 |
+
"\n",
|
451 |
+
"--- Turn 1 ---\n",
|
452 |
+
"Current input: Let me solve this problem with code:\n",
|
453 |
+
"\n",
|
454 |
+
"<code>\n",
|
455 |
+
"def fibonacci(n):\n",
|
456 |
+
" a, b = 0, 1\n",
|
457 |
+
" result = []\n",
|
458 |
+
" for _ in range(n):\n",
|
459 |
+
" result.append(a)\n",
|
460 |
+
" a, b = b, a + b\n",
|
461 |
+
" return result\n",
|
462 |
+
"\n",
|
463 |
+
"print(fibonacci(5))\n",
|
464 |
+
"</code>\n",
|
465 |
+
"KV cache present: False\n",
|
466 |
+
"Generated: \n",
|
467 |
+
"\n",
|
468 |
+
"def fibonacci(n):\n",
|
469 |
+
"\n",
|
470 |
+
" a, b = 0, 1\n",
|
471 |
+
"\n",
|
472 |
+
" result = []\n",
|
473 |
+
"\n",
|
474 |
+
"Last token ID: 198\n",
|
475 |
+
"\n",
|
476 |
+
"--- Turn 2 ---\n",
|
477 |
+
"Current input: \n",
|
478 |
+
"\n",
|
479 |
+
"def fibonacci(n):\n",
|
480 |
+
"\n",
|
481 |
+
" a, b = 0, 1\n",
|
482 |
+
"\n",
|
483 |
+
" result = []\n",
|
484 |
+
"\n",
|
485 |
+
"KV cache present: True\n",
|
486 |
+
"Generated: \n",
|
487 |
+
" a, b = b, a + b\n",
|
488 |
+
"\n",
|
489 |
+
" return result\n",
|
490 |
+
"\n",
|
491 |
+
"print(fibon\n",
|
492 |
+
"Last token ID: 261\n",
|
493 |
+
"\n",
|
494 |
+
"--- Turn 3 ---\n",
|
495 |
+
"Current input: \n",
|
496 |
+
" a, b = b, a + b\n",
|
497 |
+
"\n",
|
498 |
+
" return result\n",
|
499 |
+
"\n",
|
500 |
+
"print(fibon\n",
|
501 |
+
"KV cache present: True\n",
|
502 |
+
"Generated: acci(5))\n",
|
503 |
+
"\n",
|
504 |
+
"So the first two methods are all the same, the last one is a little different, and the second one is the\n",
|
505 |
+
"Last token ID: 262\n",
|
506 |
+
"\n",
|
507 |
+
"=== Final Results ===\n",
|
508 |
+
"\n",
|
509 |
+
"Generated completion:\n",
|
510 |
+
"\n",
|
511 |
+
"\n",
|
512 |
+
"def fibonacci(n):\n",
|
513 |
+
"\n",
|
514 |
+
" a, b = 0, 1\n",
|
515 |
+
"\n",
|
516 |
+
" result = []\n",
|
517 |
+
"\n",
|
518 |
+
" a, b = b, a + b\n",
|
519 |
+
"\n",
|
520 |
+
" return result\n",
|
521 |
+
"\n",
|
522 |
+
"print(fibonacci(5))\n",
|
523 |
+
"\n",
|
524 |
+
"So the first two methods are all the same, the last one is a little different, and the second one is the\n",
|
525 |
+
"\n",
|
526 |
+
"Full text:\n",
|
527 |
+
"Let me solve this problem with code:\n",
|
528 |
+
"\n",
|
529 |
+
"<code>\n",
|
530 |
+
"def fibonacci(n):\n",
|
531 |
+
" a, b = 0, 1\n",
|
532 |
+
" result = []\n",
|
533 |
+
" for _ in range(n):\n",
|
534 |
+
" result.append(a)\n",
|
535 |
+
" a, b = b, a + b\n",
|
536 |
+
" return result\n",
|
537 |
+
"\n",
|
538 |
+
"print(fibonacci(5))\n",
|
539 |
+
"</code>\n",
|
540 |
+
"\n",
|
541 |
+
"def fibonacci(n):\n",
|
542 |
+
"\n",
|
543 |
+
" a, b = 0, 1\n",
|
544 |
+
"\n",
|
545 |
+
" result = []\n",
|
546 |
+
"\n",
|
547 |
+
" a, b = b, a + b\n",
|
548 |
+
"\n",
|
549 |
+
" return result\n",
|
550 |
+
"\n",
|
551 |
+
"print(fibonacci(5))\n",
|
552 |
+
"\n",
|
553 |
+
"So the first two methods are all the same, the last one is a little different, and the second one is the\n",
|
554 |
+
"\n",
|
555 |
+
"Interpreter positions: [[]]\n"
|
556 |
+
]
|
557 |
+
}
|
558 |
+
]
|
559 |
+
},
|
560 |
+
{
|
561 |
+
"cell_type": "code",
|
562 |
+
"source": [],
|
563 |
+
"metadata": {
|
564 |
+
"id": "Z0EHHkP3J7Ox"
|
565 |
+
},
|
566 |
+
"execution_count": null,
|
567 |
+
"outputs": []
|
568 |
+
},
|
569 |
+
{
|
570 |
+
"cell_type": "code",
|
571 |
+
"source": [
|
572 |
+
"def test_retool_core_functionality():\n",
|
573 |
+
" # 1. Create minimal model and tokenizer\n",
|
574 |
+
" from transformers import AutoModelForCausalLM, AutoTokenizer\n",
|
575 |
+
" import torch\n",
|
576 |
+
" import transformers\n",
|
577 |
+
" import re\n",
|
578 |
+
"\n",
|
579 |
+
" # Use a small model for testing\n",
|
580 |
+
" model_name = \"gpt2-medium\"\n",
|
581 |
+
" tokenizer = AutoTokenizer.from_pretrained(model_name)\n",
|
582 |
+
"\n",
|
583 |
+
" # Check if CUDA is available\n",
|
584 |
+
" device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
|
585 |
+
" print(f\"Using device: {device}\")\n",
|
586 |
+
"\n",
|
587 |
+
" # Load model directly to the selected device\n",
|
588 |
+
" model = AutoModelForCausalLM.from_pretrained(model_name).to(device)\n",
|
589 |
+
"\n",
|
590 |
+
" # 2. Add special tokens to the tokenizer\n",
|
591 |
+
" special_tokens = {\n",
|
592 |
+
" 'additional_special_tokens': ['<code>', '</code>', '<interpreter>', '</interpreter>']\n",
|
593 |
+
" }\n",
|
594 |
+
" tokenizer.add_special_tokens(special_tokens)\n",
|
595 |
+
" model.resize_token_embeddings(len(tokenizer))\n",
|
596 |
+
"\n",
|
597 |
+
" # Get token IDs for special tokens\n",
|
598 |
+
" code_start_id = tokenizer.convert_tokens_to_ids('<code>')\n",
|
599 |
+
" code_end_id = tokenizer.convert_tokens_to_ids('</code>')\n",
|
600 |
+
" interpreter_start_id = tokenizer.convert_tokens_to_ids('<interpreter>')\n",
|
601 |
+
" interpreter_end_id = tokenizer.convert_tokens_to_ids('</interpreter>')\n",
|
602 |
+
"\n",
|
603 |
+
" print(f\"Code tokens: {code_start_id}, {code_end_id}\")\n",
|
604 |
+
" print(f\"Interpreter tokens: {interpreter_start_id}, {interpreter_end_id}\")\n",
|
605 |
+
"\n",
|
606 |
+
" # 3. Create a simplified implementation of _retool_generate_with_interpreter\n",
|
607 |
+
" def simplified_generate_with_interpreter(model, tokenizer, prompt_text, device):\n",
|
608 |
+
" \"\"\"Simplified version focusing just on the core functionality\"\"\"\n",
|
609 |
+
" # Step 1: Tokenize the prompt\n",
|
610 |
+
" prompt_ids = tokenizer.encode(prompt_text, return_tensors=\"pt\").to(device)\n",
|
611 |
+
"\n",
|
612 |
+
" # Initialize tracking variables\n",
|
613 |
+
" cumulative_completion_ids = torch.empty((1, 0), dtype=torch.long, device=device)\n",
|
614 |
+
" interpreter_positions = []\n",
|
615 |
+
"\n",
|
616 |
+
" # Step 2: Extract a code block and execute it\n",
|
617 |
+
" full_text = prompt_text\n",
|
618 |
+
" code_match = re.search(r'<code>(.*?)</code>', full_text, re.DOTALL)\n",
|
619 |
+
"\n",
|
620 |
+
" if code_match:\n",
|
621 |
+
" code_block = code_match.group(1).strip()\n",
|
622 |
+
" print(f\"Found code block: {code_block}\")\n",
|
623 |
+
"\n",
|
624 |
+
" # Mock code execution\n",
|
625 |
+
" interpreter_output = \"0 1 1 2 3\"\n",
|
626 |
+
" print(f\"Code execution result: {interpreter_output}\")\n",
|
627 |
+
"\n",
|
628 |
+
" # Format interpreter feedback\n",
|
629 |
+
" interpreter_text = f\"<interpreter>{interpreter_output}</interpreter>\"\n",
|
630 |
+
" interpreter_ids = tokenizer.encode(\n",
|
631 |
+
" interpreter_text,\n",
|
632 |
+
" return_tensors=\"pt\",\n",
|
633 |
+
" add_special_tokens=False\n",
|
634 |
+
" ).to(device)\n",
|
635 |
+
"\n",
|
636 |
+
" # Step 3: Generate a continuation after the interpreter output\n",
|
637 |
+
" # First, create a sequence with prompt + interpreter output\n",
|
638 |
+
" combined_input = prompt_text + interpreter_text\n",
|
639 |
+
" combined_ids = tokenizer.encode(combined_input, return_tensors=\"pt\").to(device)\n",
|
640 |
+
"\n",
|
641 |
+
" # Generate continuation\n",
|
642 |
+
" with torch.no_grad():\n",
|
643 |
+
" continuation_outputs = model.generate(\n",
|
644 |
+
" input_ids=combined_ids,\n",
|
645 |
+
" max_new_tokens=50,\n",
|
646 |
+
" do_sample=True,\n",
|
647 |
+
" temperature=0.7,\n",
|
648 |
+
" top_p=0.9,\n",
|
649 |
+
" pad_token_id=tokenizer.pad_token_id,\n",
|
650 |
+
" eos_token_id=tokenizer.eos_token_id,\n",
|
651 |
+
" return_dict_in_generate=True,\n",
|
652 |
+
" cache_implementation= 'offloaded',\n",
|
653 |
+
" )\n",
|
654 |
+
"\n",
|
655 |
+
" # Extract only the newly generated tokens\n",
|
656 |
+
" continuation_tokens = continuation_outputs.sequences[:, combined_ids.size(1):]\n",
|
657 |
+
"\n",
|
658 |
+
" # Combine everything for the final result\n",
|
659 |
+
" # The completion consists of: interpreter output + continuation\n",
|
660 |
+
" cumulative_completion_ids = torch.cat([interpreter_ids, continuation_tokens], dim=1)\n",
|
661 |
+
"\n",
|
662 |
+
" # Record the interpreter position\n",
|
663 |
+
" interpreter_positions.append((0, interpreter_ids.size(1) - 1))\n",
|
664 |
+
"\n",
|
665 |
+
" print(f\"Generated continuation: {tokenizer.decode(continuation_tokens[0])}\")\n",
|
666 |
+
" else:\n",
|
667 |
+
" print(\"No code block found in the prompt.\")\n",
|
668 |
+
"\n",
|
669 |
+
" return cumulative_completion_ids, interpreter_positions\n",
|
670 |
+
"\n",
|
671 |
+
" # 4. Test with a prompt that has a complete code block\n",
|
672 |
+
" prompt = \"\"\"Let's calculate Fibonacci numbers in Python:\n",
|
673 |
+
"\n",
|
674 |
+
"<code>\n",
|
675 |
+
"def fibonacci(n):\n",
|
676 |
+
" a, b = 0, 1\n",
|
677 |
+
" result = []\n",
|
678 |
+
" for _ in range(n):\n",
|
679 |
+
" result.append(a)\n",
|
680 |
+
" a, b = b, a + b\n",
|
681 |
+
" return result\n",
|
682 |
+
"\n",
|
683 |
+
"print(fibonacci(5))\n",
|
684 |
+
"</code>\"\"\"\n",
|
685 |
+
"\n",
|
686 |
+
" # 5. Run our simplified test\n",
|
687 |
+
" try:\n",
|
688 |
+
" print(\"\\n--- Testing Core Functionality ---\")\n",
|
689 |
+
" completion, positions = simplified_generate_with_interpreter(model, tokenizer, prompt, device)\n",
|
690 |
+
"\n",
|
691 |
+
" print(\"\\n--- Final Results ---\")\n",
|
692 |
+
" print(\"Completion:\")\n",
|
693 |
+
" print(tokenizer.decode(completion[0]))\n",
|
694 |
+
" print(\"\\nInterpreter positions:\", positions)\n",
|
695 |
+
"\n",
|
696 |
+
" # 6. Now also test ReToolTrainer to verify core code execution functionality\n",
|
697 |
+
" print(\"\\n--- Testing ReToolTrainer with Direct Injection ---\")\n",
|
698 |
+
"\n",
|
699 |
+
" # Setup trainer\n",
|
700 |
+
" trainer = ReToolTrainer(\n",
|
701 |
+
" model=model,\n",
|
702 |
+
" processing_class=tokenizer,\n",
|
703 |
+
" args=transformers.TrainingArguments(\n",
|
704 |
+
" output_dir=\"./test_output\",\n",
|
705 |
+
" per_device_train_batch_size=1,\n",
|
706 |
+
" ),\n",
|
707 |
+
" train_dataset=None,\n",
|
708 |
+
" eval_dataset=None,\n",
|
709 |
+
" max_turns=3,\n",
|
710 |
+
" interpreter_id=[interpreter_start_id, interpreter_end_id],\n",
|
711 |
+
" code_id=[code_start_id, code_end_id],\n",
|
712 |
+
" eos_id=tokenizer.eos_token_id\n",
|
713 |
+
" )\n",
|
714 |
+
"\n",
|
715 |
+
" # Override the _execute_code method\n",
|
716 |
+
" def mock_execute_code(self, code_block):\n",
|
717 |
+
" print(f\"Mock executing code: {code_block}\")\n",
|
718 |
+
" return \"0 1 1 2 3\"\n",
|
719 |
+
"\n",
|
720 |
+
" original_execute_code = trainer._execute_code\n",
|
721 |
+
" trainer._execute_code = mock_execute_code.__get__(trainer, ReToolTrainer)\n",
|
722 |
+
"\n",
|
723 |
+
" # Create a sequence that has a prompt and ends with </code>\n",
|
724 |
+
" # This is to simulate that the model has generated a complete code block\n",
|
725 |
+
" prompt_ids = tokenizer.encode(prompt, return_tensors=\"pt\").to(device)\n",
|
726 |
+
" attention_mask = torch.ones_like(prompt_ids)\n",
|
727 |
+
"\n",
|
728 |
+
" # Directly inject a simulated generation with a code block\n",
|
729 |
+
" # Create a custom testing function\n",
|
730 |
+
" def test_execute_code_and_continue(self, prompt_ids, attention_mask):\n",
|
731 |
+
" \"\"\"Test just the code execution and continuation part\"\"\"\n",
|
732 |
+
" print(\"Testing code execution and continuation...\")\n",
|
733 |
+
" device = next(self.model.parameters()).device\n",
|
734 |
+
" prompt_ids = prompt_ids.to(device)\n",
|
735 |
+
" attention_mask = attention_mask.to(device)\n",
|
736 |
+
"\n",
|
737 |
+
" # Extract code from the prompt\n",
|
738 |
+
" full_text = self.processing_class.decode(prompt_ids[0])\n",
|
739 |
+
" code_match = re.search(r'<code>(.*?)</code>', full_text, re.DOTALL)\n",
|
740 |
+
"\n",
|
741 |
+
" if not code_match:\n",
|
742 |
+
" print(\"No code block found in the prompt!\")\n",
|
743 |
+
" return None, []\n",
|
744 |
+
"\n",
|
745 |
+
" code_block = code_match.group(1).strip()\n",
|
746 |
+
" print(f\"Executing code block: {code_block}\")\n",
|
747 |
+
"\n",
|
748 |
+
" # Execute the code\n",
|
749 |
+
" interpreter_text = self._execute_code(code_block)\n",
|
750 |
+
"\n",
|
751 |
+
" # Format and tokenize the interpreter output\n",
|
752 |
+
" formatted_feedback = f\"{self.processing_class.decode(self.interpreter_id[0])}{interpreter_text}{self.processing_class.decode(self.interpreter_id[1])}\"\n",
|
753 |
+
" interpreter_ids = self.processing_class(\n",
|
754 |
+
" formatted_feedback,\n",
|
755 |
+
" return_tensors=\"pt\",\n",
|
756 |
+
" add_special_tokens=False\n",
|
757 |
+
" ).input_ids.to(device)\n",
|
758 |
+
"\n",
|
759 |
+
" # Record position (relative to completion only)\n",
|
760 |
+
" interpreter_positions = [(0, interpreter_ids.size(1) - 1)]\n",
|
761 |
+
"\n",
|
762 |
+
" # Combine prompt with interpreter output for continuation\n",
|
763 |
+
" combined_ids = torch.cat([prompt_ids, interpreter_ids], dim=1)\n",
|
764 |
+
" combined_mask = torch.ones_like(combined_ids)\n",
|
765 |
+
"\n",
|
766 |
+
" # Generate continuation\n",
|
767 |
+
" continuation_outputs = self.model.generate(\n",
|
768 |
+
" input_ids=combined_ids,\n",
|
769 |
+
" attention_mask=combined_mask,\n",
|
770 |
+
" max_new_tokens=50,\n",
|
771 |
+
" do_sample=True,\n",
|
772 |
+
" temperature=0.7,\n",
|
773 |
+
" top_p=0.9,\n",
|
774 |
+
" pad_token_id=self.processing_class.pad_token_id,\n",
|
775 |
+
" eos_token_id=self.eos_id,\n",
|
776 |
+
" return_dict_in_generate=True,\n",
|
777 |
+
" cache_implementation= 'offloaded',\n",
|
778 |
+
" )\n",
|
779 |
+
"\n",
|
780 |
+
" # Extract only the newly generated continuation\n",
|
781 |
+
" continuation_tokens = continuation_outputs.sequences[:, combined_ids.size(1):]\n",
|
782 |
+
"\n",
|
783 |
+
" # Full completion is: interpreter output + continuation\n",
|
784 |
+
" completion = torch.cat([interpreter_ids, continuation_tokens], dim=1)\n",
|
785 |
+
"\n",
|
786 |
+
" return completion, interpreter_positions\n",
|
787 |
+
"\n",
|
788 |
+
" # Add the test method to the trainer\n",
|
789 |
+
" trainer.test_execute_code_and_continue = test_execute_code_and_continue.__get__(trainer, ReToolTrainer)\n",
|
790 |
+
"\n",
|
791 |
+
" # Run the test\n",
|
792 |
+
" completion, positions = trainer.test_execute_code_and_continue(prompt_ids, attention_mask)\n",
|
793 |
+
"\n",
|
794 |
+
" print(\"\\n--- Trainer Test Results ---\")\n",
|
795 |
+
" if completion is not None:\n",
|
796 |
+
" print(\"Completion:\")\n",
|
797 |
+
" print(tokenizer.decode(completion[0]))\n",
|
798 |
+
" print(\"\\nInterpreter positions:\", positions)\n",
|
799 |
+
"\n",
|
800 |
+
" except Exception as e:\n",
|
801 |
+
" import traceback\n",
|
802 |
+
" print(f\"Error during testing: {e}\")\n",
|
803 |
+
" traceback.print_exc()\n",
|
804 |
+
" finally:\n",
|
805 |
+
" # Restore original method if needed\n",
|
806 |
+
" if 'trainer' in locals() and 'original_execute_code' in locals():\n",
|
807 |
+
" trainer._execute_code = original_execute_code\n",
|
808 |
+
"\n",
|
809 |
+
"# Run the test\n",
|
810 |
+
"test_retool_core_functionality()"
|
811 |
+
],
|
812 |
+
"metadata": {
|
813 |
+
"colab": {
|
814 |
+
"base_uri": "https://localhost:8080/"
|
815 |
+
},
|
816 |
+
"id": "MumcLxASaBkj",
|
817 |
+
"outputId": "21dd5d29-f402-4837-be86-08cee4b9d7a2"
|
818 |
+
},
|
819 |
+
"execution_count": 25,
|
820 |
+
"outputs": [
|
821 |
+
{
|
822 |
+
"output_type": "stream",
|
823 |
+
"name": "stdout",
|
824 |
+
"text": [
|
825 |
+
"Using device: cuda\n"
|
826 |
+
]
|
827 |
+
},
|
828 |
+
{
|
829 |
+
"output_type": "stream",
|
830 |
+
"name": "stderr",
|
831 |
+
"text": [
|
832 |
+
"The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n",
|
833 |
+
"Setting `pad_token_id` to `eos_token_id`:50256 for open-end generation.\n"
|
834 |
+
]
|
835 |
+
},
|
836 |
+
{
|
837 |
+
"output_type": "stream",
|
838 |
+
"name": "stdout",
|
839 |
+
"text": [
|
840 |
+
"Code tokens: 50257, 50258\n",
|
841 |
+
"Interpreter tokens: 50259, 50260\n",
|
842 |
+
"\n",
|
843 |
+
"--- Testing Core Functionality ---\n",
|
844 |
+
"Found code block: def fibonacci(n):\n",
|
845 |
+
" a, b = 0, 1\n",
|
846 |
+
" result = []\n",
|
847 |
+
" for _ in range(n):\n",
|
848 |
+
" result.append(a)\n",
|
849 |
+
" a, b = b, a + b\n",
|
850 |
+
" return result\n",
|
851 |
+
"\n",
|
852 |
+
"print(fibonacci(5))\n",
|
853 |
+
"Code execution result: 0 1 1 2 3\n",
|
854 |
+
"Generated continuation: 0 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48\n",
|
855 |
+
"\n",
|
856 |
+
"--- Final Results ---\n",
|
857 |
+
"Completion:\n",
|
858 |
+
"<interpreter>0 1 1 2 3</interpreter>0 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48\n",
|
859 |
+
"\n",
|
860 |
+
"Interpreter positions: [(0, 6)]\n",
|
861 |
+
"\n",
|
862 |
+
"--- Testing ReToolTrainer with Direct Injection ---\n",
|
863 |
+
"Testing code execution and continuation...\n",
|
864 |
+
"Executing code block: def fibonacci(n):\n",
|
865 |
+
" a, b = 0, 1\n",
|
866 |
+
" result = []\n",
|
867 |
+
" for _ in range(n):\n",
|
868 |
+
" result.append(a)\n",
|
869 |
+
" a, b = b, a + b\n",
|
870 |
+
" return result\n",
|
871 |
+
"\n",
|
872 |
+
"print(fibonacci(5))\n",
|
873 |
+
"Mock executing code: def fibonacci(n):\n",
|
874 |
+
" a, b = 0, 1\n",
|
875 |
+
" result = []\n",
|
876 |
+
" for _ in range(n):\n",
|
877 |
+
" result.append(a)\n",
|
878 |
+
" a, b = b, a + b\n",
|
879 |
+
" return result\n",
|
880 |
+
"\n",
|
881 |
+
"print(fibonacci(5))\n"
|
882 |
+
]
|
883 |
+
},
|
884 |
+
{
|
885 |
+
"output_type": "stream",
|
886 |
+
"name": "stderr",
|
887 |
+
"text": [
|
888 |
+
"/tmp/ipython-input-20-2039368761.py:57: FutureWarning: `tokenizer` is deprecated and will be removed in version 5.0.0 for `ReToolTrainer.__init__`. Use `processing_class` instead.\n",
|
889 |
+
" super().__init__(\n"
|
890 |
+
]
|
891 |
+
},
|
892 |
+
{
|
893 |
+
"output_type": "stream",
|
894 |
+
"name": "stdout",
|
895 |
+
"text": [
|
896 |
+
"\n",
|
897 |
+
"--- Trainer Test Results ---\n",
|
898 |
+
"Completion:\n",
|
899 |
+
"<interpreter>0 1 1 2 3</interpreter>1 1 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3\n",
|
900 |
+
"\n",
|
901 |
+
"Interpreter positions: [(0, 6)]\n"
|
902 |
+
]
|
903 |
+
}
|
904 |
+
]
|
905 |
+
},
|
906 |
+
{
|
907 |
+
"cell_type": "code",
|
908 |
+
"source": [],
|
909 |
+
"metadata": {
|
910 |
+
"id": "2KBJZTXOaCA3"
|
911 |
+
},
|
912 |
+
"execution_count": null,
|
913 |
+
"outputs": []
|
914 |
+
},
|
915 |
+
{
|
916 |
+
"cell_type": "code",
|
917 |
+
"source": [
|
918 |
+
"from transformers import AutoTokenizer, AutoModelForCausalLM, DynamicCache\n",
|
919 |
+
"\n",
|
920 |
+
"def test_direct_kv_cache_usage():\n",
|
921 |
+
" # 1. Setup model, tokenizer, and device\n",
|
922 |
+
" from transformers import AutoModelForCausalLM, AutoTokenizer\n",
|
923 |
+
" import torch\n",
|
924 |
+
"\n",
|
925 |
+
" # Use a model that fits in memory\n",
|
926 |
+
" model_name = \"gpt2-medium\"\n",
|
927 |
+
" tokenizer = AutoTokenizer.from_pretrained(model_name)\n",
|
928 |
+
"\n",
|
929 |
+
" # Check device\n",
|
930 |
+
" device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
|
931 |
+
" print(f\"Using device: {device}\")\n",
|
932 |
+
"\n",
|
933 |
+
" # Load model to device\n",
|
934 |
+
" model = AutoModelForCausalLM.from_pretrained(model_name).to(device)\n",
|
935 |
+
"\n",
|
936 |
+
" # 2. Manual token-by-token generation with KV caching\n",
|
937 |
+
" def generate_with_manual_kv_cache(input_ids, num_tokens=20):\n",
|
938 |
+
" \"\"\"Generate tokens one by one with manual KV cache management\"\"\"\n",
|
939 |
+
" current_ids = input_ids.clone()\n",
|
940 |
+
" past_key_values = None\n",
|
941 |
+
"\n",
|
942 |
+
" generated_tokens = []\n",
|
943 |
+
"\n",
|
944 |
+
" for _ in range(num_tokens):\n",
|
945 |
+
" # Forward pass with past_key_values\n",
|
946 |
+
" with torch.no_grad():\n",
|
947 |
+
" outputs = model(\n",
|
948 |
+
" input_ids=current_ids if past_key_values is None else current_ids[:, -1:],\n",
|
949 |
+
" #past_key_values=past_key_values,\n",
|
950 |
+
" past_key_values= DynamicCache.from_legacy_cache(past_key_values),\n",
|
951 |
+
" use_cache=True\n",
|
952 |
+
" )\n",
|
953 |
+
"\n",
|
954 |
+
" # Get logits for the next token (last position)\n",
|
955 |
+
" next_token_logits = outputs.logits[:, -1, :]\n",
|
956 |
+
"\n",
|
957 |
+
" # Sample from the distribution\n",
|
958 |
+
" probs = torch.nn.functional.softmax(next_token_logits / 0.7, dim=-1)\n",
|
959 |
+
" next_token = torch.multinomial(probs, num_samples=1)\n",
|
960 |
+
"\n",
|
961 |
+
" # Add to generated tokens\n",
|
962 |
+
" generated_tokens.append(next_token.item())\n",
|
963 |
+
"\n",
|
964 |
+
" # Update current_ids for next iteration\n",
|
965 |
+
" current_ids = torch.cat([current_ids, next_token], dim=1)\n",
|
966 |
+
"\n",
|
967 |
+
" # Update past_key_values\n",
|
968 |
+
" past_key_values = outputs.past_key_values\n",
|
969 |
+
" #print('after generation, past_key_values ', past_key_values)\n",
|
970 |
+
"\n",
|
971 |
+
" return generated_tokens, past_key_values\n",
|
972 |
+
"\n",
|
973 |
+
" # 3. Run multi-turn generation with manual KV cache\n",
|
974 |
+
" def run_manual_multi_turn_generation():\n",
|
975 |
+
" # Start with a prompt\n",
|
976 |
+
" prompt = \"Once upon a time, in a magical forest, there lived a\"\n",
|
977 |
+
"\n",
|
978 |
+
" # Tokenize the prompt\n",
|
979 |
+
" prompt_ids = tokenizer.encode(prompt, return_tensors=\"pt\").to(device)\n",
|
980 |
+
"\n",
|
981 |
+
" # Initialize tracking\n",
|
982 |
+
" full_text = prompt\n",
|
983 |
+
" current_ids = prompt_ids\n",
|
984 |
+
" past_kv = None\n",
|
985 |
+
"\n",
|
986 |
+
" # Generate in multiple turns\n",
|
987 |
+
" for turn_idx in range(3): # 3 turns\n",
|
988 |
+
" print(f\"\\n==== Turn {turn_idx + 1} ====\")\n",
|
989 |
+
" print(f\"Current input: {tokenizer.decode(current_ids[0])}\")\n",
|
990 |
+
" print(f\"KV cache present: {past_kv is not None}\")\n",
|
991 |
+
"\n",
|
992 |
+
" # Pause for inspection\n",
|
993 |
+
" input(\"Press Enter to generate next part...\")\n",
|
994 |
+
"\n",
|
995 |
+
" # Generate new tokens manually\n",
|
996 |
+
" new_token_ids, past_kv = generate_with_manual_kv_cache(current_ids, num_tokens=20)\n",
|
997 |
+
"\n",
|
998 |
+
" # Decode and display new tokens\n",
|
999 |
+
" new_text = tokenizer.decode(new_token_ids)\n",
|
1000 |
+
" print(f\"Generated: {new_text}\")\n",
|
1001 |
+
"\n",
|
1002 |
+
" # Accumulate\n",
|
1003 |
+
" full_text += new_text\n",
|
1004 |
+
"\n",
|
1005 |
+
" # Now inject a custom continuation\n",
|
1006 |
+
" custom_text = \" Suddenly, a rainbow appeared in the sky!\"\n",
|
1007 |
+
" custom_ids = tokenizer.encode(custom_text, return_tensors=\"pt\").to(device)\n",
|
1008 |
+
"\n",
|
1009 |
+
" print(f\"\\n==== Injecting custom text: {custom_text} ====\")\n",
|
1010 |
+
"\n",
|
1011 |
+
" # Update tracking\n",
|
1012 |
+
" full_text += custom_text\n",
|
1013 |
+
"\n",
|
1014 |
+
" # Prepare for next turn - start with the custom text\n",
|
1015 |
+
" current_ids = custom_ids\n",
|
1016 |
+
" # Keep past_kv from previous generation\n",
|
1017 |
+
"\n",
|
1018 |
+
" print(f\"Full text so far: {full_text}\")\n",
|
1019 |
+
" print(\"-\" * 50)\n",
|
1020 |
+
"\n",
|
1021 |
+
" print(\"\\n==== Final Story ====\")\n",
|
1022 |
+
" print(full_text)\n",
|
1023 |
+
"\n",
|
1024 |
+
" return full_text\n",
|
1025 |
+
"\n",
|
1026 |
+
" # 4. Run the test\n",
|
1027 |
+
" try:\n",
|
1028 |
+
" print(\"\\n=== Testing Manual KV Cache Usage ===\\n\")\n",
|
1029 |
+
"\n",
|
1030 |
+
" story = run_manual_multi_turn_generation()\n",
|
1031 |
+
"\n",
|
1032 |
+
" print(\"\\n=== Test Complete ===\")\n",
|
1033 |
+
"\n",
|
1034 |
+
" except Exception as e:\n",
|
1035 |
+
" import traceback\n",
|
1036 |
+
" print(f\"Error during testing: {e}\")\n",
|
1037 |
+
" traceback.print_exc()\n",
|
1038 |
+
"\n",
|
1039 |
+
"# Run the test\n",
|
1040 |
+
"test_direct_kv_cache_usage()"
|
1041 |
+
],
|
1042 |
+
"metadata": {
|
1043 |
+
"colab": {
|
1044 |
+
"base_uri": "https://localhost:8080/"
|
1045 |
+
},
|
1046 |
+
"id": "p2_BiDS0IlPl",
|
1047 |
+
"outputId": "f62d0e49-8f27-4c9b-aeac-dbe1fe1def21"
|
1048 |
+
},
|
1049 |
+
"execution_count": 3,
|
1050 |
+
"outputs": [
|
1051 |
+
{
|
1052 |
+
"output_type": "stream",
|
1053 |
+
"name": "stdout",
|
1054 |
+
"text": [
|
1055 |
+
"Using device: cuda\n",
|
1056 |
+
"\n",
|
1057 |
+
"=== Testing Manual KV Cache Usage ===\n",
|
1058 |
+
"\n",
|
1059 |
+
"\n",
|
1060 |
+
"==== Turn 1 ====\n",
|
1061 |
+
"Current input: Once upon a time, in a magical forest, there lived a\n",
|
1062 |
+
"KV cache present: False\n",
|
1063 |
+
"Press Enter to generate next part...\n",
|
1064 |
+
"Generated: wizard and a witch. One day, they were attacked by a flying beast and the wizard fled to\n",
|
1065 |
+
"\n",
|
1066 |
+
"==== Injecting custom text: Suddenly, a rainbow appeared in the sky! ====\n",
|
1067 |
+
"Full text so far: Once upon a time, in a magical forest, there lived a wizard and a witch. One day, they were attacked by a flying beast and the wizard fled to Suddenly, a rainbow appeared in the sky!\n",
|
1068 |
+
"--------------------------------------------------\n",
|
1069 |
+
"\n",
|
1070 |
+
"==== Turn 2 ====\n",
|
1071 |
+
"Current input: Suddenly, a rainbow appeared in the sky!\n",
|
1072 |
+
"KV cache present: True\n",
|
1073 |
+
"Press Enter to generate next part...\n",
|
1074 |
+
"Generated: Although it was a little less than a hundred meters wide, it was enough to cover the entire sky\n",
|
1075 |
+
"\n",
|
1076 |
+
"==== Injecting custom text: Suddenly, a rainbow appeared in the sky! ====\n",
|
1077 |
+
"Full text so far: Once upon a time, in a magical forest, there lived a wizard and a witch. One day, they were attacked by a flying beast and the wizard fled to Suddenly, a rainbow appeared in the sky! Although it was a little less than a hundred meters wide, it was enough to cover the entire sky Suddenly, a rainbow appeared in the sky!\n",
|
1078 |
+
"--------------------------------------------------\n",
|
1079 |
+
"\n",
|
1080 |
+
"==== Turn 3 ====\n",
|
1081 |
+
"Current input: Suddenly, a rainbow appeared in the sky!\n",
|
1082 |
+
"KV cache present: True\n",
|
1083 |
+
"Press Enter to generate next part...\n",
|
1084 |
+
"Generated: A rainbow!\n",
|
1085 |
+
"\n",
|
1086 |
+
"I thought about it, and after seeing how many people were in the sky\n",
|
1087 |
+
"\n",
|
1088 |
+
"==== Injecting custom text: Suddenly, a rainbow appeared in the sky! ====\n",
|
1089 |
+
"Full text so far: Once upon a time, in a magical forest, there lived a wizard and a witch. One day, they were attacked by a flying beast and the wizard fled to Suddenly, a rainbow appeared in the sky! Although it was a little less than a hundred meters wide, it was enough to cover the entire sky Suddenly, a rainbow appeared in the sky! A rainbow!\n",
|
1090 |
+
"\n",
|
1091 |
+
"I thought about it, and after seeing how many people were in the sky Suddenly, a rainbow appeared in the sky!\n",
|
1092 |
+
"--------------------------------------------------\n",
|
1093 |
+
"\n",
|
1094 |
+
"==== Final Story ====\n",
|
1095 |
+
"Once upon a time, in a magical forest, there lived a wizard and a witch. One day, they were attacked by a flying beast and the wizard fled to Suddenly, a rainbow appeared in the sky! Although it was a little less than a hundred meters wide, it was enough to cover the entire sky Suddenly, a rainbow appeared in the sky! A rainbow!\n",
|
1096 |
+
"\n",
|
1097 |
+
"I thought about it, and after seeing how many people were in the sky Suddenly, a rainbow appeared in the sky!\n",
|
1098 |
+
"\n",
|
1099 |
+
"=== Test Complete ===\n"
|
1100 |
+
]
|
1101 |
+
}
|
1102 |
+
]
|
1103 |
+
},
|
1104 |
+
{
|
1105 |
+
"cell_type": "code",
|
1106 |
+
"source": [
|
1107 |
+
"def test_retool_with_working_kv_cache():\n",
|
1108 |
+
" # 1. Setup model, tokenizer, and device\n",
|
1109 |
+
" from transformers import AutoModelForCausalLM, AutoTokenizer\n",
|
1110 |
+
" import torch\n",
|
1111 |
+
" import re\n",
|
1112 |
+
"\n",
|
1113 |
+
" # Use a model that fits in memory\n",
|
1114 |
+
" model_name = \"gpt2-medium\"\n",
|
1115 |
+
" tokenizer = AutoTokenizer.from_pretrained(model_name)\n",
|
1116 |
+
"\n",
|
1117 |
+
" # Check device\n",
|
1118 |
+
" device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
|
1119 |
+
" print(f\"Using device: {device}\")\n",
|
1120 |
+
"\n",
|
1121 |
+
" # Load model to device\n",
|
1122 |
+
" model = AutoModelForCausalLM.from_pretrained(model_name).to(device)\n",
|
1123 |
+
"\n",
|
1124 |
+
" # 2. Add special tokens\n",
|
1125 |
+
" special_tokens = {\n",
|
1126 |
+
" 'additional_special_tokens': ['<code>', '</code>', '<interpreter>', '</interpreter>']\n",
|
1127 |
+
" }\n",
|
1128 |
+
" tokenizer.add_special_tokens(special_tokens)\n",
|
1129 |
+
" model.resize_token_embeddings(len(tokenizer))\n",
|
1130 |
+
"\n",
|
1131 |
+
" # Get token IDs\n",
|
1132 |
+
" code_start_id = tokenizer.convert_tokens_to_ids('<code>')\n",
|
1133 |
+
" code_end_id = tokenizer.convert_tokens_to_ids('</code>')\n",
|
1134 |
+
" interpreter_start_id = tokenizer.convert_tokens_to_ids('<interpreter>')\n",
|
1135 |
+
" interpreter_end_id = tokenizer.convert_tokens_to_ids('</interpreter>')\n",
|
1136 |
+
"\n",
|
1137 |
+
" print(f\"EOS token ID: {tokenizer.eos_token_id}\")\n",
|
1138 |
+
" print(f\"Code tokens: {code_start_id}, {code_end_id}\")\n",
|
1139 |
+
" print(f\"Interpreter tokens: {interpreter_start_id}, {interpreter_end_id}\")\n",
|
1140 |
+
"\n",
|
1141 |
+
" # 3. Manual token generation with KV caching\n",
|
1142 |
+
" def generate_with_manual_kv_cache(input_ids, past_key_values=None, max_tokens=20, stop_ids=None):\n",
|
1143 |
+
" \"\"\"Generate tokens with KV cache until a stop token or max_tokens is reached\"\"\"\n",
|
1144 |
+
" if stop_ids is None:\n",
|
1145 |
+
" stop_ids = [tokenizer.eos_token_id]\n",
|
1146 |
+
"\n",
|
1147 |
+
" current_ids = input_ids.clone()\n",
|
1148 |
+
" generated_tokens = []\n",
|
1149 |
+
"\n",
|
1150 |
+
" for _ in range(max_tokens):\n",
|
1151 |
+
" # Forward pass with past_key_values\n",
|
1152 |
+
" with torch.no_grad():\n",
|
1153 |
+
" outputs = model(\n",
|
1154 |
+
" input_ids=current_ids if past_key_values is None else current_ids[:, -1:],\n",
|
1155 |
+
" past_key_values=past_key_values,\n",
|
1156 |
+
" use_cache=True\n",
|
1157 |
+
" )\n",
|
1158 |
+
"\n",
|
1159 |
+
" # Get logits for the next token\n",
|
1160 |
+
" next_token_logits = outputs.logits[:, -1, :]\n",
|
1161 |
+
"\n",
|
1162 |
+
" # Sample from the distribution\n",
|
1163 |
+
" probs = torch.nn.functional.softmax(next_token_logits / 0.7, dim=-1)\n",
|
1164 |
+
" next_token = torch.multinomial(probs, num_samples=1)\n",
|
1165 |
+
"\n",
|
1166 |
+
" # Get the token ID\n",
|
1167 |
+
" token_id = next_token.item()\n",
|
1168 |
+
"\n",
|
1169 |
+
" # Add to generated tokens\n",
|
1170 |
+
" generated_tokens.append(token_id)\n",
|
1171 |
+
"\n",
|
1172 |
+
" # Update current_ids for next iteration\n",
|
1173 |
+
" current_ids = torch.cat([current_ids, next_token], dim=1)\n",
|
1174 |
+
"\n",
|
1175 |
+
" # Update past_key_values\n",
|
1176 |
+
" past_key_values = outputs.past_key_values\n",
|
1177 |
+
"\n",
|
1178 |
+
" # Check if we hit a stop token\n",
|
1179 |
+
" if token_id in stop_ids:\n",
|
1180 |
+
" break\n",
|
1181 |
+
"\n",
|
1182 |
+
" # Convert list of token IDs to tensor\n",
|
1183 |
+
" result_tensor = torch.tensor([generated_tokens], device=device)\n",
|
1184 |
+
" return result_tensor, past_key_values\n",
|
1185 |
+
"\n",
|
1186 |
+
" # 4. ReTool simulation with working KV cache\n",
|
1187 |
+
" def simulate_retool_with_working_kv_cache(prompt, max_turns=3):\n",
|
1188 |
+
" \"\"\"Simulate the ReTool process with working KV cache\"\"\"\n",
|
1189 |
+
" # Tokenize the prompt\n",
|
1190 |
+
" prompt_ids = tokenizer.encode(prompt, return_tensors=\"pt\").to(device)\n",
|
1191 |
+
"\n",
|
1192 |
+
" # Initialize tracking\n",
|
1193 |
+
" full_sequence = prompt_ids.clone()\n",
|
1194 |
+
" completion = torch.empty((1, 0), dtype=torch.long, device=device)\n",
|
1195 |
+
" interpreter_positions = []\n",
|
1196 |
+
"\n",
|
1197 |
+
" # Keep the KV cache from previous turns\n",
|
1198 |
+
" past_kv = None\n",
|
1199 |
+
"\n",
|
1200 |
+
" for turn_idx in range(max_turns):\n",
|
1201 |
+
" print(f\"\\n==== Turn {turn_idx + 1} ====\")\n",
|
1202 |
+
"\n",
|
1203 |
+
" # Determine what to generate from\n",
|
1204 |
+
" if turn_idx == 0:\n",
|
1205 |
+
" # First turn - generate from the prompt\n",
|
1206 |
+
" current_input = full_sequence\n",
|
1207 |
+
" print(f\"Generating from prompt: {tokenizer.decode(current_input[0])}\")\n",
|
1208 |
+
" else:\n",
|
1209 |
+
" # Later turns - might be generating from interpreter output\n",
|
1210 |
+
" current_input = full_sequence[:, -20:] if full_sequence.size(1) > 20 else full_sequence\n",
|
1211 |
+
" print(f\"Generating from: {tokenizer.decode(current_input[0])}\")\n",
|
1212 |
+
"\n",
|
1213 |
+
" # Generate with manual KV cache\n",
|
1214 |
+
" new_tokens, past_kv = generate_with_manual_kv_cache(\n",
|
1215 |
+
" current_input,\n",
|
1216 |
+
" past_key_values=past_kv,\n",
|
1217 |
+
" max_tokens=30,\n",
|
1218 |
+
" stop_ids=[tokenizer.eos_token_id, code_end_id]\n",
|
1219 |
+
" )\n",
|
1220 |
+
"\n",
|
1221 |
+
" # Decode and display\n",
|
1222 |
+
" new_text = tokenizer.decode(new_tokens[0])\n",
|
1223 |
+
" print(f\"Generated: {new_text}\")\n",
|
1224 |
+
"\n",
|
1225 |
+
" # Update tracking\n",
|
1226 |
+
" full_sequence = torch.cat([full_sequence, new_tokens], dim=1)\n",
|
1227 |
+
" completion = torch.cat([completion, new_tokens], dim=1)\n",
|
1228 |
+
"\n",
|
1229 |
+
" # Check for code blocks\n",
|
1230 |
+
" full_text = tokenizer.decode(full_sequence[0])\n",
|
1231 |
+
" code_blocks = re.findall(r'<code>(.*?)</code>', full_text, re.DOTALL)\n",
|
1232 |
+
"\n",
|
1233 |
+
" # Pause for inspection\n",
|
1234 |
+
" input(\"Press Enter to continue...\")\n",
|
1235 |
+
"\n",
|
1236 |
+
" if code_blocks and code_end_id in new_tokens[0]:\n",
|
1237 |
+
" print(\"\\n==== Found code block! ====\")\n",
|
1238 |
+
" # Get the last code block\n",
|
1239 |
+
" code_block = code_blocks[-1].strip()\n",
|
1240 |
+
" print(f\"Code block: {code_block}\")\n",
|
1241 |
+
"\n",
|
1242 |
+
" # Mock code execution\n",
|
1243 |
+
" print(\"\\n==== Executing code ====\")\n",
|
1244 |
+
" interpreter_output = \"0 1 1 2 3\"\n",
|
1245 |
+
" print(f\"Execution result: {interpreter_output}\")\n",
|
1246 |
+
"\n",
|
1247 |
+
" # Format interpreter feedback\n",
|
1248 |
+
" interpreter_text = f\"<interpreter>{interpreter_output}</interpreter>\"\n",
|
1249 |
+
" interpreter_ids = tokenizer.encode(\n",
|
1250 |
+
" interpreter_text,\n",
|
1251 |
+
" return_tensors=\"pt\",\n",
|
1252 |
+
" add_special_tokens=False\n",
|
1253 |
+
" ).to(device)\n",
|
1254 |
+
"\n",
|
1255 |
+
" # Record positions\n",
|
1256 |
+
" start_idx = completion.size(1)\n",
|
1257 |
+
" completion = torch.cat([completion, interpreter_ids], dim=1)\n",
|
1258 |
+
" end_idx = completion.size(1) - 1\n",
|
1259 |
+
" interpreter_positions.append((start_idx, end_idx))\n",
|
1260 |
+
"\n",
|
1261 |
+
" # Add to full sequence\n",
|
1262 |
+
" full_sequence = torch.cat([full_sequence, interpreter_ids], dim=1)\n",
|
1263 |
+
" print(f\"Added interpreter output: {interpreter_text}\")\n",
|
1264 |
+
"\n",
|
1265 |
+
" # We're still using the same past_kv for the next turn\n",
|
1266 |
+
" # The next input will be the interpreter output\n",
|
1267 |
+
" elif tokenizer.eos_token_id in new_tokens[0]:\n",
|
1268 |
+
" print(\"Found EOS token, ending generation\")\n",
|
1269 |
+
" break\n",
|
1270 |
+
"\n",
|
1271 |
+
" return completion, interpreter_positions\n",
|
1272 |
+
"\n",
|
1273 |
+
" # 5. Test with a prompt containing a code block\n",
|
1274 |
+
" prompt = \"\"\"Let me solve this problem with code:\n",
|
1275 |
+
"\n",
|
1276 |
+
"<code>\n",
|
1277 |
+
"def fibonacci(n):\n",
|
1278 |
+
" a, b = 0, 1\n",
|
1279 |
+
" result = []\n",
|
1280 |
+
" for _ in range(n):\n",
|
1281 |
+
" result.append(a)\n",
|
1282 |
+
" a, b = b, a + b\n",
|
1283 |
+
" return result\n",
|
1284 |
+
"\n",
|
1285 |
+
"print(fibonacci(5))\n",
|
1286 |
+
"</code>\"\"\"\n",
|
1287 |
+
"\n",
|
1288 |
+
" # 6. Run the test\n",
|
1289 |
+
" try:\n",
|
1290 |
+
" print(\"\\n=== Testing ReTool with Working KV Cache ===\\n\")\n",
|
1291 |
+
"\n",
|
1292 |
+
" completion, positions = simulate_retool_with_working_kv_cache(prompt)\n",
|
1293 |
+
"\n",
|
1294 |
+
" print(\"\\n=== Final Results ===\\n\")\n",
|
1295 |
+
" print(\"Generated completion:\")\n",
|
1296 |
+
" print(tokenizer.decode(completion[0]))\n",
|
1297 |
+
"\n",
|
1298 |
+
" print(\"\\nFull text:\")\n",
|
1299 |
+
" print(tokenizer.decode(torch.cat([tokenizer.encode(prompt, return_tensors=\"pt\")[0].to(device), completion[0]])))\n",
|
1300 |
+
"\n",
|
1301 |
+
" print(\"\\nInterpreter positions:\", positions)\n",
|
1302 |
+
"\n",
|
1303 |
+
" except Exception as e:\n",
|
1304 |
+
" import traceback\n",
|
1305 |
+
" print(f\"Error during testing: {e}\")\n",
|
1306 |
+
" traceback.print_exc()\n",
|
1307 |
+
"\n",
|
1308 |
+
"# Run the test\n",
|
1309 |
+
"test_retool_with_working_kv_cache()"
|
1310 |
+
],
|
1311 |
+
"metadata": {
|
1312 |
+
"colab": {
|
1313 |
+
"base_uri": "https://localhost:8080/"
|
1314 |
+
},
|
1315 |
+
"id": "T6_ob3S4M5mn",
|
1316 |
+
"outputId": "e5f42a03-c49a-403f-d27b-0ae50ecd095e"
|
1317 |
+
},
|
1318 |
+
"execution_count": 4,
|
1319 |
+
"outputs": [
|
1320 |
+
{
|
1321 |
+
"output_type": "stream",
|
1322 |
+
"name": "stdout",
|
1323 |
+
"text": [
|
1324 |
+
"Using device: cuda\n"
|
1325 |
+
]
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"output_type": "stream",
|
1329 |
+
"name": "stderr",
|
1330 |
+
"text": [
|
1331 |
+
"The new embeddings will be initialized from a multivariate normal distribution that has old embeddings' mean and covariance. As described in this article: https://nlp.stanford.edu/~johnhew/vocab-expansion.html. To disable this, use `mean_resizing=False`\n"
|
1332 |
+
]
|
1333 |
+
},
|
1334 |
+
{
|
1335 |
+
"output_type": "stream",
|
1336 |
+
"name": "stdout",
|
1337 |
+
"text": [
|
1338 |
+
"EOS token ID: 50256\n",
|
1339 |
+
"Code tokens: 50257, 50258\n",
|
1340 |
+
"Interpreter tokens: 50259, 50260\n",
|
1341 |
+
"\n",
|
1342 |
+
"=== Testing ReTool with Working KV Cache ===\n",
|
1343 |
+
"\n",
|
1344 |
+
"\n",
|
1345 |
+
"==== Turn 1 ====\n",
|
1346 |
+
"Generating from prompt: Let me solve this problem with code:\n",
|
1347 |
+
"\n",
|
1348 |
+
"<code>\n",
|
1349 |
+
"def fibonacci(n):\n",
|
1350 |
+
" a, b = 0, 1\n",
|
1351 |
+
" result = []\n",
|
1352 |
+
" for _ in range(n):\n",
|
1353 |
+
" result.append(a)\n",
|
1354 |
+
" a, b = b, a + b\n",
|
1355 |
+
" return result\n",
|
1356 |
+
"\n",
|
1357 |
+
"print(fibonacci(5))\n",
|
1358 |
+
"</code>\n",
|
1359 |
+
"Generated: \n",
|
1360 |
+
"def fibonacci(n):\n",
|
1361 |
+
"\n",
|
1362 |
+
" a, b = 0, 1\n",
|
1363 |
+
"\n",
|
1364 |
+
" result = [0,\n",
|
1365 |
+
"Press Enter to continue...\n",
|
1366 |
+
"\n",
|
1367 |
+
"==== Turn 2 ====\n",
|
1368 |
+
"Generating from: a, b = 0, 1\n",
|
1369 |
+
"\n",
|
1370 |
+
" result = [0,\n",
|
1371 |
+
"Generated: 0, 0, 1]\n",
|
1372 |
+
"\n",
|
1373 |
+
" a, b = b, a + b\n",
|
1374 |
+
"\n",
|
1375 |
+
"\n",
|
1376 |
+
"ret = [0,\n",
|
1377 |
+
"Press Enter to continue...\n",
|
1378 |
+
"\n",
|
1379 |
+
"==== Turn 3 ====\n",
|
1380 |
+
"Generating from: a, b = b, a + b\n",
|
1381 |
+
"\n",
|
1382 |
+
"\n",
|
1383 |
+
"ret = [0,\n",
|
1384 |
+
"Generated: 1, 1, 1]\n",
|
1385 |
+
"\n",
|
1386 |
+
"for i,j in enumerate(n, fibonacci(n-1, 1-f\n",
|
1387 |
+
"Press Enter to continue...\n",
|
1388 |
+
"\n",
|
1389 |
+
"=== Final Results ===\n",
|
1390 |
+
"\n",
|
1391 |
+
"Generated completion:\n",
|
1392 |
+
"\n",
|
1393 |
+
"def fibonacci(n):\n",
|
1394 |
+
"\n",
|
1395 |
+
" a, b = 0, 1\n",
|
1396 |
+
"\n",
|
1397 |
+
" result = [0, 0, 0, 1]\n",
|
1398 |
+
"\n",
|
1399 |
+
" a, b = b, a + b\n",
|
1400 |
+
"\n",
|
1401 |
+
"\n",
|
1402 |
+
"ret = [0, 1, 1, 1]\n",
|
1403 |
+
"\n",
|
1404 |
+
"for i,j in enumerate(n, fibonacci(n-1, 1-f\n",
|
1405 |
+
"\n",
|
1406 |
+
"Full text:\n",
|
1407 |
+
"Let me solve this problem with code:\n",
|
1408 |
+
"\n",
|
1409 |
+
"<code>\n",
|
1410 |
+
"def fibonacci(n):\n",
|
1411 |
+
" a, b = 0, 1\n",
|
1412 |
+
" result = []\n",
|
1413 |
+
" for _ in range(n):\n",
|
1414 |
+
" result.append(a)\n",
|
1415 |
+
" a, b = b, a + b\n",
|
1416 |
+
" return result\n",
|
1417 |
+
"\n",
|
1418 |
+
"print(fibonacci(5))\n",
|
1419 |
+
"</code>\n",
|
1420 |
+
"def fibonacci(n):\n",
|
1421 |
+
"\n",
|
1422 |
+
" a, b = 0, 1\n",
|
1423 |
+
"\n",
|
1424 |
+
" result = [0, 0, 0, 1]\n",
|
1425 |
+
"\n",
|
1426 |
+
" a, b = b, a + b\n",
|
1427 |
+
"\n",
|
1428 |
+
"\n",
|
1429 |
+
"ret = [0, 1, 1, 1]\n",
|
1430 |
+
"\n",
|
1431 |
+
"for i,j in enumerate(n, fibonacci(n-1, 1-f\n",
|
1432 |
+
"\n",
|
1433 |
+
"Interpreter positions: []\n"
|
1434 |
+
]
|
1435 |
+
}
|
1436 |
+
]
|
1437 |
+
},
|
1438 |
+
{
|
1439 |
+
"cell_type": "code",
|
1440 |
+
"source": [],
|
1441 |
+
"metadata": {
|
1442 |
+
"id": "YFIXEa5fM5px"
|
1443 |
+
},
|
1444 |
+
"execution_count": null,
|
1445 |
+
"outputs": []
|
1446 |
+
},
|
1447 |
+
{
|
1448 |
+
"cell_type": "code",
|
1449 |
+
"source": [],
|
1450 |
+
"metadata": {
|
1451 |
+
"id": "FjaszXJOIlVz"
|
1452 |
+
},
|
1453 |
+
"execution_count": null,
|
1454 |
+
"outputs": []
|
1455 |
+
},
|
1456 |
+
{
|
1457 |
+
"cell_type": "code",
|
1458 |
+
"source": [],
|
1459 |
+
"metadata": {
|
1460 |
+
"id": "xgjX6_xZaCDQ"
|
1461 |
+
},
|
1462 |
+
"execution_count": null,
|
1463 |
+
"outputs": []
|
1464 |
+
},
|
1465 |
+
{
|
1466 |
+
"cell_type": "code",
|
1467 |
+
"source": [],
|
1468 |
+
"metadata": {
|
1469 |
+
"id": "iTGXE8lRaCF4"
|
1470 |
+
},
|
1471 |
+
"execution_count": null,
|
1472 |
+
"outputs": []
|
1473 |
+
},
|
1474 |
+
{
|
1475 |
+
"cell_type": "code",
|
1476 |
+
"source": [],
|
1477 |
+
"metadata": {
|
1478 |
+
"id": "oM5BSZHEaCIx"
|
1479 |
+
},
|
1480 |
+
"execution_count": null,
|
1481 |
+
"outputs": []
|
1482 |
+
},
|
1483 |
+
{
|
1484 |
+
"cell_type": "markdown",
|
1485 |
+
"metadata": {
|
1486 |
+
"id": "7d252539"
|
1487 |
+
},
|
1488 |
+
"source": [
|
1489 |
+
"**1. Clear CUDA Cache:**\n",
|
1490 |
+
"\n",
|
1491 |
+
"This is often the first thing to try when you get a CUDA OOM error."
|
1492 |
+
]
|
1493 |
+
},
|
1494 |
+
{
|
1495 |
+
"cell_type": "code",
|
1496 |
+
"source": [],
|
1497 |
+
"metadata": {
|
1498 |
+
"id": "YhKSjnxiaBCb"
|
1499 |
+
},
|
1500 |
+
"execution_count": null,
|
1501 |
+
"outputs": []
|
1502 |
+
},
|
1503 |
+
{
|
1504 |
+
"cell_type": "code",
|
1505 |
+
"metadata": {
|
1506 |
+
"colab": {
|
1507 |
+
"base_uri": "https://localhost:8080/"
|
1508 |
+
},
|
1509 |
+
"id": "f793cb16",
|
1510 |
+
"outputId": "3b5b2b99-2e9b-44a2-88df-7293e51de014"
|
1511 |
+
},
|
1512 |
+
"source": [
|
1513 |
+
"import torch\n",
|
1514 |
+
"\n",
|
1515 |
+
"if torch.cuda.is_available():\n",
|
1516 |
+
" torch.cuda.empty_cache()\n",
|
1517 |
+
" print(\"CUDA cache cleared!\")\n",
|
1518 |
+
"else:\n",
|
1519 |
+
" print(\"CUDA not available, no cache to clear.\")"
|
1520 |
+
],
|
1521 |
+
"execution_count": 18,
|
1522 |
+
"outputs": [
|
1523 |
+
{
|
1524 |
+
"output_type": "stream",
|
1525 |
+
"name": "stdout",
|
1526 |
+
"text": [
|
1527 |
+
"CUDA cache cleared!\n"
|
1528 |
+
]
|
1529 |
+
}
|
1530 |
+
]
|
1531 |
+
},
|
1532 |
+
{
|
1533 |
+
"cell_type": "markdown",
|
1534 |
+
"metadata": {
|
1535 |
+
"id": "d25e30fe"
|
1536 |
+
},
|
1537 |
+
"source": [
|
1538 |
+
"**2. Delete Large Variables and Run Garbage Collection:**\n",
|
1539 |
+
"\n",
|
1540 |
+
"Identify variables holding large objects (like models, tensors, dataframes) that you don't need anymore and delete them. Then explicitly run garbage collection."
|
1541 |
+
]
|
1542 |
+
},
|
1543 |
+
{
|
1544 |
+
"cell_type": "code",
|
1545 |
+
"metadata": {
|
1546 |
+
"colab": {
|
1547 |
+
"base_uri": "https://localhost:8080/"
|
1548 |
+
},
|
1549 |
+
"id": "02474dce",
|
1550 |
+
"outputId": "80223089-31f7-485f-8490-aad00d97277a"
|
1551 |
+
},
|
1552 |
+
"source": [
|
1553 |
+
"# Example: if you have a large model or tensor named 'model' or 'data'\n",
|
1554 |
+
"# del model\n",
|
1555 |
+
"# del data\n",
|
1556 |
+
"\n",
|
1557 |
+
"import gc\n",
|
1558 |
+
"gc.collect()\n",
|
1559 |
+
"\n",
|
1560 |
+
"print(\"Garbage collection complete.\")"
|
1561 |
+
],
|
1562 |
+
"execution_count": 19,
|
1563 |
+
"outputs": [
|
1564 |
+
{
|
1565 |
+
"output_type": "stream",
|
1566 |
+
"name": "stdout",
|
1567 |
+
"text": [
|
1568 |
+
"Garbage collection complete.\n"
|
1569 |
+
]
|
1570 |
+
}
|
1571 |
+
]
|
1572 |
+
},
|
1573 |
+
{
|
1574 |
+
"cell_type": "markdown",
|
1575 |
+
"metadata": {
|
1576 |
+
"id": "105cefce"
|
1577 |
+
},
|
1578 |
+
"source": [
|
1579 |
+
"**3. Restart Runtime:**\n",
|
1580 |
+
"\n",
|
1581 |
+
"If the above steps don't work, restarting the runtime is the most drastic but often most effective way to clear all memory. Go to the Colab menu: `Runtime` -> `Restart runtime`."
|
1582 |
+
]
|
1583 |
+
}
|
1584 |
+
]
|
1585 |
+
}
|