|
import birder |
|
import numpy as np |
|
from birder.inference.classification import infer_image |
|
from huggingface_hub import HfApi |
|
|
|
import gradio as gr |
|
|
|
|
|
def get_birder_classification_models(): |
|
api = HfApi() |
|
models = api.list_models(author="birder-project", tags="image-classification") |
|
return [model.modelId.split("/")[-1] for model in models] |
|
|
|
|
|
def load_model_and_predict(image, model_name): |
|
try: |
|
(net, class_to_idx, signature, rgb_stats) = birder.load_pretrained_model(model_name, inference=True) |
|
size = birder.get_size_from_signature(signature) |
|
transform = birder.classification_transform(size, rgb_stats) |
|
(out, _) = infer_image(net, image, transform) |
|
|
|
idx_to_class = {v: k for k, v in class_to_idx.items()} |
|
topk_idx = np.argsort(out[0])[-3:][::-1] |
|
predictions = [(idx_to_class[idx], float(out[0][idx])) for idx in topk_idx] |
|
|
|
return predictions |
|
except Exception as e: |
|
return [(f"Error: {str(e)}", 0.0)] |
|
|
|
|
|
def predict(image, model_name): |
|
predictions = load_model_and_predict(image, model_name) |
|
return {f"{class_name} ({conf:.2%})": conf for class_name, conf in predictions} |
|
|
|
|
|
def create_interface(): |
|
models = get_birder_classification_models() |
|
|
|
examples = [ |
|
["Common myna.jpeg", "mvit_v2_t_il-all"], |
|
["Eurasian hoopoe.jpeg", "convnext_v2_tiny_intermediate-eu-common"], |
|
|
|
["Grey heron.jpeg", "iformer_s_arabian-peninsula"], |
|
] |
|
|
|
|
|
iface = gr.Interface( |
|
analytics_enabled=False, |
|
fn=predict, |
|
inputs=[ |
|
gr.Image(type="pil", label="Input Image"), |
|
gr.Dropdown( |
|
choices=models, |
|
label="Select Model", |
|
value=models[0] if models else None, |
|
), |
|
], |
|
outputs=gr.Label(num_top_classes=3), |
|
examples=examples, |
|
title="Birder Image Classification", |
|
description="Select a model and upload an image or use one of the examples to get bird species predictions.", |
|
) |
|
|
|
return iface |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
demo = create_interface() |
|
demo.launch() |
|
|