birgermoell commited on
Commit
ebf7fba
·
verified ·
1 Parent(s): 4169791

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +63 -0
app.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import torch
3
+ import tempfile
4
+ import os
5
+ from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
6
+ from audiorecorder import audiorecorder
7
+ from pydub import AudioSegment
8
+
9
+ # Setup model
10
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
11
+ torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
12
+ model_id = "KBLab/kb-whisper-tiny"
13
+
14
+ @st.cache_resource
15
+ def load_model():
16
+ model = AutoModelForSpeechSeq2Seq.from_pretrained(
17
+ model_id, torch_dtype=torch_dtype, use_safetensors=True, cache_dir="cache"
18
+ )
19
+ model.to(device)
20
+ processor = AutoProcessor.from_pretrained(model_id)
21
+ return pipeline(
22
+ "automatic-speech-recognition",
23
+ model=model,
24
+ tokenizer=processor.tokenizer,
25
+ feature_extractor=processor.feature_extractor,
26
+ torch_dtype=torch_dtype,
27
+ device=device,
28
+ )
29
+
30
+ pipe = load_model()
31
+
32
+ def transcribe_audio(audio_path):
33
+ return pipe(audio_path, chunk_length_s=30, generate_kwargs={"task": "transcribe", "language": "sv"})
34
+
35
+ st.title("Speech-to-Text Transcription")
36
+
37
+ # Audio recording
38
+ st.subheader("Record Audio")
39
+ recorded_audio = audiorecorder("Start Recording", "Stop Recording")
40
+
41
+ if recorded_audio:
42
+ with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_file:
43
+ temp_file.write(recorded_audio.tobytes())
44
+ temp_file_path = temp_file.name
45
+ st.audio(temp_file_path, format="audio/wav")
46
+ result = transcribe_audio(temp_file_path)
47
+ st.write("### Transcription:")
48
+ st.write(result["text"])
49
+ os.remove(temp_file_path)
50
+
51
+ # File upload
52
+ st.subheader("Upload Audio File")
53
+ uploaded_file = st.file_uploader("Choose an audio file", type=["wav", "mp3", "ogg", "flac"])
54
+
55
+ if uploaded_file:
56
+ with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(uploaded_file.name)[-1]) as temp_file:
57
+ temp_file.write(uploaded_file.read())
58
+ temp_file_path = temp_file.name
59
+ st.audio(temp_file_path)
60
+ result = transcribe_audio(temp_file_path)
61
+ st.write("### Transcription:")
62
+ st.write(result["text"])
63
+ os.remove(temp_file_path)