Spaces:
Running
Running
henok3878
commited on
Commit
·
a9beef1
1
Parent(s):
7a9620f
feat: init commit for hugging face space
Browse files- .gitattributes +1 -1
- README.md +11 -3
- inference_utils.py +48 -0
- main.py +263 -0
- packaged_models/model.pt +3 -0
- packaged_models/model.scripted.pt +3 -0
- packaged_models/model.scripted.quantized.pt +3 -0
- requirements.txt +30 -0
.gitattributes
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
@@ -33,4 +34,3 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
-
packaged_models/*.pt filter=lfs diff=lfs merge=lfs -text
|
|
|
1 |
+
packaged_models/*.pt filter=lfs diff=lfs merge=lfs -text
|
2 |
*.7z filter=lfs diff=lfs merge=lfs -text
|
3 |
*.arrow filter=lfs diff=lfs merge=lfs -text
|
4 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
|
|
34 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
35 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
36 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
README.md
CHANGED
@@ -1,12 +1,20 @@
|
|
1 |
---
|
2 |
title: Scriptify Api
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
colorTo: green
|
6 |
-
sdk:
|
|
|
|
|
7 |
pinned: false
|
8 |
license: mit
|
9 |
short_description: An API for generating realistic handwriting stroke points.
|
10 |
---
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
title: Scriptify Api
|
3 |
+
emoji: ✍️
|
4 |
+
colorFrom: indigo
|
5 |
colorTo: green
|
6 |
+
sdk: python
|
7 |
+
app_file: main.py
|
8 |
+
python_version: 3.9
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
short_description: An API for generating realistic handwriting stroke points.
|
12 |
---
|
13 |
|
14 |
+
|
15 |
+
# Scriptify Handwriting Generation API
|
16 |
+
|
17 |
+
This Space hosts an API for generating handwriting from text.
|
18 |
+
Use the `/generate` endpoint with a POST request.
|
19 |
+
|
20 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
inference_utils.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
NULL_CHAR = '\x00'
|
5 |
+
|
6 |
+
def construct_alphabet_list(alphabet_string: str) -> list[str]:
|
7 |
+
if not isinstance(alphabet_string, str):
|
8 |
+
raise TypeError("alphabet_string must be a string")
|
9 |
+
|
10 |
+
char_list = list(alphabet_string)
|
11 |
+
return [NULL_CHAR] + char_list
|
12 |
+
|
13 |
+
def get_alphabet_map(alphabet_list: list[str]) -> Dict[str, int]:
|
14 |
+
"""creates a char to index map from full alphabet list"""
|
15 |
+
return {char: idx for idx, char in enumerate(alphabet_list)}
|
16 |
+
|
17 |
+
def encode_text(text: str, char_to_index_map: Dict[str, int],
|
18 |
+
max_length: int, add_eos: bool = True, eos_char_index: int = 0
|
19 |
+
) -> tuple[np.ndarray, int]:
|
20 |
+
"""Encode a text string into a sequence of integer indices"""
|
21 |
+
encoded = [char_to_index_map.get(c, eos_char_index) for c in text]
|
22 |
+
if add_eos:
|
23 |
+
encoded.append(eos_char_index)
|
24 |
+
|
25 |
+
true_length = len(encoded)
|
26 |
+
|
27 |
+
if true_length <= max_length:
|
28 |
+
padded_encoded = np.full(max_length, eos_char_index, dtype=np.int64)
|
29 |
+
padded_encoded[:true_length] = encoded
|
30 |
+
else:
|
31 |
+
padded_encoded = np.array(encoded[:max_length], dtype=np.int64)
|
32 |
+
true_length = max_length
|
33 |
+
|
34 |
+
return np.array([padded_encoded]), true_length
|
35 |
+
|
36 |
+
|
37 |
+
def convert_offsets_to_absolute_coords(stroke_offsets: list[list[float]]) -> list[list[float]]:
|
38 |
+
if not stroke_offsets:
|
39 |
+
return []
|
40 |
+
|
41 |
+
# convert to numpy for vectorized operations
|
42 |
+
strokes_array = np.array(stroke_offsets)
|
43 |
+
|
44 |
+
# vectorized cumulative sum for x and y
|
45 |
+
strokes_array[:, 0] = np.cumsum(strokes_array[:, 0]) # cumulative dx
|
46 |
+
strokes_array[:, 1] = np.cumsum(strokes_array[:, 1]) # cumulative dy
|
47 |
+
|
48 |
+
return strokes_array.tolist()
|
main.py
ADDED
@@ -0,0 +1,263 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional
|
2 |
+
from fastapi import FastAPI, HTTPException, status
|
3 |
+
from fastapi.middleware.cors import CORSMiddleware
|
4 |
+
from pydantic import BaseModel, Field
|
5 |
+
import torch
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from pathlib import Path
|
8 |
+
import logging
|
9 |
+
import time
|
10 |
+
from contextlib import asynccontextmanager
|
11 |
+
from inference_utils import construct_alphabet_list, convert_offsets_to_absolute_coords, encode_text, get_alphabet_map
|
12 |
+
|
13 |
+
logging.basicConfig(level=logging.INFO)
|
14 |
+
logger = logging.getLogger(__name__)
|
15 |
+
|
16 |
+
MODEL_DIR = Path("../../ml/packaged_models")
|
17 |
+
SCRIPTED_MODEL_NAME = "handwriting_model.scripted.pt"
|
18 |
+
METADATA_MODEL_NAME = "handwriting_model.pt"
|
19 |
+
|
20 |
+
scripted_model: Optional[torch.jit.ScriptModule] = None
|
21 |
+
model_metadata: Optional[dict] = None
|
22 |
+
device: Optional[torch.device] = None
|
23 |
+
alphabet_map: Optional[dict[str, int]] = None
|
24 |
+
ALPHABET_LIST: Optional[list[str]] = None
|
25 |
+
ALPHABET_SIZE: Optional[int] = None
|
26 |
+
max_text_len: Optional[int] = None
|
27 |
+
output_mixture_components: Optional[int] = None # To store num_mixtures for GMM sampling
|
28 |
+
lstm_size: Optional[int] = None
|
29 |
+
attention_mixture_components: Optional[int] = None
|
30 |
+
|
31 |
+
# Patience for early stopping in generate_strokes
|
32 |
+
PATIENCE_PEN_UP_EOS = 15
|
33 |
+
MIN_MOVEMENT_THRESHOLD = 0.02
|
34 |
+
|
35 |
+
|
36 |
+
class HandwritingRequest(BaseModel):
|
37 |
+
text: str = Field(..., min_length=1, max_length=40, description="Text to generate handwriting for")
|
38 |
+
max_length: int = Field(default=700, ge=50, le=1500, description="Maximum number of stroke points")
|
39 |
+
bias: float = Field(default=0.75, ge=0.1, le=2.0, description="Sampling bias for generation")
|
40 |
+
class HandwritingResponse(BaseModel):
|
41 |
+
success: bool = True
|
42 |
+
input_text: str
|
43 |
+
generation_time_ms: float
|
44 |
+
num_points: int
|
45 |
+
strokes: list[list[float]]
|
46 |
+
message: str = "Successfully generated handwriting."
|
47 |
+
|
48 |
+
class HealthResponse(BaseModel):
|
49 |
+
status: str
|
50 |
+
model_loaded: bool
|
51 |
+
device: str
|
52 |
+
model_metadata_keys: Optional[list[str]] = None
|
53 |
+
|
54 |
+
@asynccontextmanager
|
55 |
+
async def lifespan(app: FastAPI):
|
56 |
+
"""Lifespan context manager for startup and shutdown events"""
|
57 |
+
global scripted_model, model_metadata, device, alphabet_map, max_text_len, ALPHABET_LIST, output_mixture_components, lstm_size, attention_mixture_components, ALPHABET_SIZE
|
58 |
+
logger.info("Attempting to load model resources during startup")
|
59 |
+
try:
|
60 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
61 |
+
logger.info(f"Using device: {device}")
|
62 |
+
|
63 |
+
scripted_model_path = MODEL_DIR / SCRIPTED_MODEL_NAME
|
64 |
+
metadata_model_path = MODEL_DIR / METADATA_MODEL_NAME
|
65 |
+
|
66 |
+
if not scripted_model_path.exists():
|
67 |
+
logger.error(f"Traced model not found at {scripted_model_path}")
|
68 |
+
raise FileNotFoundError(f"Traced model not found at {scripted_model_path}")
|
69 |
+
if not metadata_model_path or not metadata_model_path.exists():
|
70 |
+
logger.error(f"Metadata model file not found at {metadata_model_path}")
|
71 |
+
raise FileNotFoundError(f"Metadata model file not found at {metadata_model_path}")
|
72 |
+
|
73 |
+
# Load the traced model
|
74 |
+
scripted_model = torch.jit.load(scripted_model_path, map_location=device)
|
75 |
+
if scripted_model:
|
76 |
+
scripted_model.eval()
|
77 |
+
logger.info(f"Traced model loaded successfully from {scripted_model_path}")
|
78 |
+
|
79 |
+
# Load the metadata
|
80 |
+
model_metadata = torch.load(metadata_model_path, map_location='cpu')
|
81 |
+
if model_metadata:
|
82 |
+
logger.info(f"Model metadata loaded successfully from {metadata_model_path}")
|
83 |
+
logger.info(f"Model metadata keys: {list(model_metadata.keys())}")
|
84 |
+
|
85 |
+
config_full = model_metadata['config_full']
|
86 |
+
if not config_full or not isinstance(config_full, dict):
|
87 |
+
raise ValueError(f"Key `config_full` not found or not a dict")
|
88 |
+
|
89 |
+
dataset_config = config_full['dataset']
|
90 |
+
model_params = config_full['model_params']
|
91 |
+
|
92 |
+
if not dataset_config or not isinstance(dataset_config, dict):
|
93 |
+
raise ValueError(f"Key `dataset` not found or not a dict in config_full")
|
94 |
+
alphabet_str = dataset_config['alphabet_string']
|
95 |
+
max_text_len = dataset_config['max_text_len']
|
96 |
+
output_mixture_components = model_params['output_mixture_components']
|
97 |
+
|
98 |
+
lstm_size = model_params['lstm_size']
|
99 |
+
attention_mixture_components = model_params['attention_mixture_components']
|
100 |
+
|
101 |
+
ALPHABET_LIST = construct_alphabet_list(alphabet_str)
|
102 |
+
ALPHABET_SIZE = len(ALPHABET_LIST)
|
103 |
+
alphabet_map = get_alphabet_map(ALPHABET_LIST)
|
104 |
+
|
105 |
+
logger.info(f"Alphabet created. Size: {len(ALPHABET_LIST)}")
|
106 |
+
logger.info("Model resources are loaded and ready")
|
107 |
+
else:
|
108 |
+
raise ValueError(f"Failed to load content frm metadata file")
|
109 |
+
|
110 |
+
except Exception as e:
|
111 |
+
logger.error(f"Error loading model resources: {e}", exc_info=True)
|
112 |
+
scripted_model = None
|
113 |
+
model_metadata = None
|
114 |
+
raise
|
115 |
+
|
116 |
+
yield
|
117 |
+
|
118 |
+
# Cleanup on shutdown
|
119 |
+
logger.info("Shutting down API and cleaning up resources")
|
120 |
+
scripted_model = None
|
121 |
+
model_metadata = None
|
122 |
+
|
123 |
+
app = FastAPI(
|
124 |
+
title="Scriptify API",
|
125 |
+
description="API to generate handwriting from text using a PyTorch model.",
|
126 |
+
version="0.1.0",
|
127 |
+
lifespan=lifespan
|
128 |
+
)
|
129 |
+
|
130 |
+
# add CORS middleware
|
131 |
+
app.add_middleware(
|
132 |
+
CORSMiddleware,
|
133 |
+
allow_origins=["http://localhost:5173","http://127.0.0.1:5173"],
|
134 |
+
allow_credentials=True,
|
135 |
+
allow_methods=["GET", "POST"],
|
136 |
+
allow_headers=["*"],
|
137 |
+
)
|
138 |
+
|
139 |
+
@app.get("/", tags=["General"])
|
140 |
+
async def read_root():
|
141 |
+
return {"message": "Welcome to the Scriptify Handwriting Generation API!"}
|
142 |
+
|
143 |
+
@app.get("/health", response_model=HealthResponse, tags=["General"])
|
144 |
+
async def health_check():
|
145 |
+
global scripted_model, model_metadata, device, alphabet_map, max_text_len, ALPHABET_LIST
|
146 |
+
|
147 |
+
is_healthy = all([scripted_model, model_metadata, device, alphabet_map, max_text_len, ALPHABET_LIST])
|
148 |
+
|
149 |
+
return HealthResponse(
|
150 |
+
status="healthy" if is_healthy else "unhealthy",
|
151 |
+
model_loaded=bool(scripted_model),
|
152 |
+
device=str(device) if device else "unknown",
|
153 |
+
model_metadata_keys=list(model_metadata.keys()) if model_metadata else None,
|
154 |
+
)
|
155 |
+
|
156 |
+
def text_to_tensor(text: str, device: torch.device) -> tuple[torch.Tensor, torch.Tensor]:
|
157 |
+
"""Convert text to tensor format expected by the model"""
|
158 |
+
global alphabet_map, max_text_len
|
159 |
+
if alphabet_map is None:
|
160 |
+
raise ValueError("Alphabet map not initialized during api startup")
|
161 |
+
if max_text_len is None:
|
162 |
+
raise ValueError("`max_text_len` is not initialized during api startup")
|
163 |
+
padded_encoded_np, true_length = encode_text(
|
164 |
+
text=text,
|
165 |
+
char_to_index_map=alphabet_map,
|
166 |
+
max_length=max_text_len
|
167 |
+
)
|
168 |
+
|
169 |
+
char_seq = torch.from_numpy(padded_encoded_np).to(device=device, dtype=torch.long)
|
170 |
+
char_len = torch.tensor([true_length], device=device, dtype=torch.long)
|
171 |
+
|
172 |
+
return char_seq, char_len
|
173 |
+
|
174 |
+
def generate_strokes(
|
175 |
+
char_seq: torch.Tensor,
|
176 |
+
char_lengths: torch.Tensor,
|
177 |
+
max_gen_len: int,
|
178 |
+
api_bias: float,
|
179 |
+
current_device: torch.device
|
180 |
+
) -> list[list[float]]:
|
181 |
+
"""Generate strokes using the model's built-in sample method"""
|
182 |
+
global scripted_model
|
183 |
+
if scripted_model is None:
|
184 |
+
raise ValueError("Scripted model not initialized.")
|
185 |
+
|
186 |
+
with torch.no_grad():
|
187 |
+
try:
|
188 |
+
stroke_tensors = scripted_model.sample(
|
189 |
+
char_seq,
|
190 |
+
char_lengths,
|
191 |
+
max_length=max_gen_len,
|
192 |
+
bias=api_bias
|
193 |
+
)
|
194 |
+
|
195 |
+
if len(stroke_tensors) == 1 and stroke_tensors[0].dim() == 2:
|
196 |
+
all_strokes_tensor = stroke_tensors[0]
|
197 |
+
stroke_offsets = all_strokes_tensor.cpu().numpy().tolist()
|
198 |
+
else:
|
199 |
+
stroke_offsets = []
|
200 |
+
for stroke_tensor in stroke_tensors:
|
201 |
+
if stroke_tensor.dim() == 2:
|
202 |
+
stroke_data = stroke_tensor.squeeze(0).cpu().numpy().tolist()
|
203 |
+
else:
|
204 |
+
stroke_data = stroke_tensor.cpu().numpy().tolist()
|
205 |
+
|
206 |
+
if len(stroke_data) == 3:
|
207 |
+
stroke_offsets.append(stroke_data)
|
208 |
+
|
209 |
+
return stroke_offsets
|
210 |
+
|
211 |
+
except Exception as e:
|
212 |
+
logger.error(f"Error in model sampling: {e}", exc_info=True)
|
213 |
+
return []
|
214 |
+
|
215 |
+
@app.post("/generate", response_model=HandwritingResponse, tags=["Generation"])
|
216 |
+
async def generate_handwriting_endpoint(request: HandwritingRequest):
|
217 |
+
if not all([scripted_model, model_metadata, device, alphabet_map, max_text_len]):
|
218 |
+
logger.error("API not fully initialized. Check /health endpoint.")
|
219 |
+
raise HTTPException(
|
220 |
+
status_code=status.HTTP_503_SERVICE_UNAVAILABLE,
|
221 |
+
detail="Model or required resources not loaded."
|
222 |
+
)
|
223 |
+
|
224 |
+
assert device is not None, "Device is None inside generate_handwriting"
|
225 |
+
start_time = time.time()
|
226 |
+
|
227 |
+
try:
|
228 |
+
char_seq_tensor, char_lengths_tensor = text_to_tensor(request.text, device)
|
229 |
+
|
230 |
+
relative_stroke_offsets = generate_strokes(
|
231 |
+
char_seq_tensor, char_lengths_tensor, request.max_length, request.bias, device
|
232 |
+
)
|
233 |
+
|
234 |
+
if not relative_stroke_offsets:
|
235 |
+
return HandwritingResponse(
|
236 |
+
success=False,
|
237 |
+
input_text=request.text,
|
238 |
+
strokes=[],
|
239 |
+
num_points=0,
|
240 |
+
generation_time_ms=(time.time() - start_time) * 1000,
|
241 |
+
message="No strokes generated."
|
242 |
+
)
|
243 |
+
|
244 |
+
absolute_stroke_coords = convert_offsets_to_absolute_coords(relative_stroke_offsets)
|
245 |
+
generation_time_ms = (time.time() - start_time) * 1000
|
246 |
+
|
247 |
+
return HandwritingResponse(
|
248 |
+
input_text=request.text,
|
249 |
+
strokes=absolute_stroke_coords,
|
250 |
+
num_points=len(absolute_stroke_coords),
|
251 |
+
generation_time_ms=generation_time_ms
|
252 |
+
)
|
253 |
+
except ValueError as ve:
|
254 |
+
logger.error(f"ValueError during generation for '{request.text}': {ve}", exc_info=True)
|
255 |
+
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail=str(ve))
|
256 |
+
except Exception as e:
|
257 |
+
logger.error(f"Unexpected error for '{request.text}': {e}", exc_info=True)
|
258 |
+
raise HTTPException(status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail="An unexpected error occurred.")
|
259 |
+
|
260 |
+
if __name__ == "__main__":
|
261 |
+
import uvicorn
|
262 |
+
logger.info("Starting Uvicorn server for Scriptify API...")
|
263 |
+
uvicorn.run("main:app", host="0.0.0.0", port=8000, reload=True, app_dir=".")
|
packaged_models/model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d9430eccb030d1ad0458ea6bb19696346ad5b3998e658b78acdfd1f19779498a
|
3 |
+
size 17601066
|
packaged_models/model.scripted.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5deb88801c26ab924d0079d9e5522fd55114bd8429c180c7646dd7fbc0049f3e
|
3 |
+
size 17632110
|
packaged_models/model.scripted.quantized.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:793a525a5a8d4f62cc80ddbf0f0ca0fddc13ec202ef2fc6efd9bfaa32c78e306
|
3 |
+
size 17674936
|
requirements.txt
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
annotated-types==0.7.0
|
2 |
+
anyio==4.9.0
|
3 |
+
click==8.1.8
|
4 |
+
exceptiongroup==1.3.0
|
5 |
+
fastapi==0.115.12
|
6 |
+
filelock==3.13.1
|
7 |
+
fsspec==2024.6.1
|
8 |
+
h11==0.16.0
|
9 |
+
httptools==0.6.4
|
10 |
+
idna==3.10
|
11 |
+
Jinja2==3.1.4
|
12 |
+
MarkupSafe==2.1.5
|
13 |
+
mpmath==1.3.0
|
14 |
+
networkx==3.2.1
|
15 |
+
numpy==2.0.2
|
16 |
+
pydantic==2.11.5
|
17 |
+
pydantic-settings==2.9.1
|
18 |
+
pydantic_core==2.33.2
|
19 |
+
python-dotenv==1.1.0
|
20 |
+
PyYAML==6.0.2
|
21 |
+
sniffio==1.3.1
|
22 |
+
starlette==0.46.2
|
23 |
+
sympy==1.13.1
|
24 |
+
torch==2.5.1+cpu
|
25 |
+
typing-inspection==0.4.1
|
26 |
+
typing_extensions==4.13.2
|
27 |
+
uvicorn==0.34.2
|
28 |
+
uvloop==0.21.0
|
29 |
+
watchfiles==1.0.5
|
30 |
+
websockets==15.0.1
|