Elron Bandel
commited on
Commit
·
3411193
1
Parent(s):
c467c21
init
Browse files- README.md +3 -3
- app.py +192 -0
- requirements.txt +5 -0
README.md
CHANGED
|
@@ -1,8 +1,8 @@
|
|
| 1 |
---
|
| 2 |
title: AlephBERT
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: streamlit
|
| 7 |
app_file: app.py
|
| 8 |
pinned: false
|
|
|
|
| 1 |
---
|
| 2 |
title: AlephBERT
|
| 3 |
+
emoji: 🥙
|
| 4 |
+
colorFrom: pink
|
| 5 |
+
colorTo: pink
|
| 6 |
sdk: streamlit
|
| 7 |
app_file: app.py
|
| 8 |
pinned: false
|
app.py
ADDED
|
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
from transformers.tokenization_utils import TruncationStrategy
|
| 4 |
+
|
| 5 |
+
import tokenizers
|
| 6 |
+
import pandas as pd
|
| 7 |
+
import requests
|
| 8 |
+
|
| 9 |
+
st.set_page_config(
|
| 10 |
+
page_title='AlephBERT Demo',
|
| 11 |
+
page_icon="🥙",
|
| 12 |
+
initial_sidebar_state="expanded",
|
| 13 |
+
)
|
| 14 |
+
|
| 15 |
+
# st.markdown(
|
| 16 |
+
# """
|
| 17 |
+
# <style>
|
| 18 |
+
|
| 19 |
+
# .sidebar .sidebar-content {
|
| 20 |
+
# background-image: linear-gradient(#3377ff, #80aaff);
|
| 21 |
+
# }
|
| 22 |
+
|
| 23 |
+
# footer {
|
| 24 |
+
# color:white;
|
| 25 |
+
# visibility: hidden;
|
| 26 |
+
# }
|
| 27 |
+
# input {
|
| 28 |
+
# direction: rtl;
|
| 29 |
+
# }
|
| 30 |
+
# .stTextInput .instructions {
|
| 31 |
+
# color: grey;
|
| 32 |
+
# font-size: 9px;}
|
| 33 |
+
|
| 34 |
+
# </style>
|
| 35 |
+
# <div style="color:white; font-size:13px; font-family:monospace;position: fixed; z-index: 1; bottom: 0; right:0; background-color: #f63766;margin:3px;padding:8px;border-radius: 5px;"><a href="https://huggingface.co/onlplab/alephbert-base" target="_blank" style="text-decoration: none;color: white;">Use aleph-bert in your project </a></div>
|
| 36 |
+
# """,
|
| 37 |
+
# unsafe_allow_html=True,
|
| 38 |
+
# )
|
| 39 |
+
|
| 40 |
+
models = {
|
| 41 |
+
"AlephBERT-base": {
|
| 42 |
+
"name_or_path":"onlplab/alephbert-base",
|
| 43 |
+
"description":"AlephBERT base model",
|
| 44 |
+
},
|
| 45 |
+
"HeBERT-base-TAU": {
|
| 46 |
+
"name_or_path":"avichr/heBERT",
|
| 47 |
+
"description":"HeBERT model created by TAU"
|
| 48 |
+
},
|
| 49 |
+
"mBERT-base-multilingual-cased": {
|
| 50 |
+
"name_or_path":"bert-base-multilingual-cased",
|
| 51 |
+
"description":"Multilingual BERT model"
|
| 52 |
+
}
|
| 53 |
+
}
|
| 54 |
+
|
| 55 |
+
@st.cache(show_spinner=False)
|
| 56 |
+
def get_json_from_url(url):
|
| 57 |
+
return models
|
| 58 |
+
return requests.get(url).json()
|
| 59 |
+
|
| 60 |
+
# models = get_json_from_url('https://huggingface.co/spaces/biu-nlp/AlephBERT/raw/main/models.json')
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
@st.cache(show_spinner=False, hash_funcs={tokenizers.Tokenizer: str})
|
| 65 |
+
def load_model(model):
|
| 66 |
+
pipe = pipeline('fill-mask', models[model]['name_or_path'])
|
| 67 |
+
def do_tokenize(inputs):
|
| 68 |
+
return pipe.tokenizer(
|
| 69 |
+
inputs,
|
| 70 |
+
add_special_tokens=True,
|
| 71 |
+
return_tensors=pipe.framework,
|
| 72 |
+
padding=True,
|
| 73 |
+
truncation=TruncationStrategy.DO_NOT_TRUNCATE,
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
def _parse_and_tokenize(
|
| 77 |
+
inputs, tokenized=False, **kwargs
|
| 78 |
+
):
|
| 79 |
+
if not tokenized:
|
| 80 |
+
inputs = do_tokenize(inputs)
|
| 81 |
+
return inputs
|
| 82 |
+
|
| 83 |
+
pipe._parse_and_tokenize = _parse_and_tokenize
|
| 84 |
+
|
| 85 |
+
return pipe, do_tokenize
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
st.title('AlephBERT🥙')
|
| 92 |
+
st.sidebar.markdown(
|
| 93 |
+
"""<div><a target="_blank" href="https://nlp.biu.ac.il/~rtsarfaty/onlp#"><img src="https://nlp.biu.ac.il/~rtsarfaty/static/landing_static/img/onlp_logo.png" style="filter: invert(100%);display: block;margin-left: auto;margin-right: auto;
|
| 94 |
+
width: 70%;"></a>
|
| 95 |
+
<p style="color:white; font-size:13px; font-family:monospace; text-align: center">AlephBERT Demo • <a href="https://nlp.biu.ac.il/~rtsarfaty/onlp#" style="text-decoration: none;color: white;" target="_blank">ONLP Lab</a></p></div>
|
| 96 |
+
<br>""",
|
| 97 |
+
unsafe_allow_html=True,
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
mode = 'Models'
|
| 101 |
+
|
| 102 |
+
if mode == 'Models':
|
| 103 |
+
model = st.sidebar.selectbox(
|
| 104 |
+
'Select Model',
|
| 105 |
+
list(models.keys()))
|
| 106 |
+
masking_level = st.sidebar.selectbox('Masking Level:', ['Tokens', 'SubWords'])
|
| 107 |
+
n_res = st.sidebar.number_input(
|
| 108 |
+
'Number Of Results',
|
| 109 |
+
format='%d',
|
| 110 |
+
value=5,
|
| 111 |
+
min_value=1,
|
| 112 |
+
max_value=100)
|
| 113 |
+
|
| 114 |
+
model_tags = model.split('-')
|
| 115 |
+
model_tags[0] = 'Model:' + model_tags[0]
|
| 116 |
+
|
| 117 |
+
st.markdown(''.join([f'<span style="color:white; font-size:13px; font-family:monospace; background-color: #f63766;margin:3px;padding:8px;border-radius: 5px;">{tag}</span>' for tag in model_tags]),unsafe_allow_html=True)
|
| 118 |
+
st.markdown('___')
|
| 119 |
+
####
|
| 120 |
+
#prepare the model
|
| 121 |
+
####
|
| 122 |
+
|
| 123 |
+
unmasker, tokenize = load_model(model)
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
####
|
| 127 |
+
# get inputs
|
| 128 |
+
####
|
| 129 |
+
|
| 130 |
+
input_text = st.text_input('Insert text you want to mask', '')
|
| 131 |
+
if input_text:
|
| 132 |
+
input_masked = None
|
| 133 |
+
tokenized = tokenize(input_text)
|
| 134 |
+
ids = tokenized['input_ids'].tolist()[0]
|
| 135 |
+
subwords = unmasker.tokenizer.convert_ids_to_tokens(ids)
|
| 136 |
+
|
| 137 |
+
if masking_level == 'Tokens':
|
| 138 |
+
tokens = str(input_text).split()
|
| 139 |
+
masked_token = st.selectbox('Select token to mask:', [''] + tokens)
|
| 140 |
+
if masked_token != '':
|
| 141 |
+
input_masked = ' '.join(token if token != masked_token else '[MASK]' for token in tokens)
|
| 142 |
+
display_input = input_masked
|
| 143 |
+
if masking_level == 'SubWords':
|
| 144 |
+
tokens = subwords
|
| 145 |
+
idx = st.selectbox('Select token to mask:', list(range(0,len(tokens)-1)), format_func=lambda i: tokens[i] if i else '')
|
| 146 |
+
tokenized['input_ids'][0][idx] = unmasker.tokenizer.mask_token_id
|
| 147 |
+
ids = tokenized['input_ids'].tolist()[0]
|
| 148 |
+
display_input = ' '.join(unmasker.tokenizer.convert_ids_to_tokens(ids[1:-1]))
|
| 149 |
+
if idx:
|
| 150 |
+
input_masked = tokenized
|
| 151 |
+
|
| 152 |
+
if input_masked:
|
| 153 |
+
st.markdown('#### Input:')
|
| 154 |
+
ids = tokenized['input_ids'].tolist()[0]
|
| 155 |
+
subwords = unmasker.tokenizer.convert_ids_to_tokens(ids)
|
| 156 |
+
st.markdown(f'<p dir="rtl">{display_input}</p>',
|
| 157 |
+
unsafe_allow_html=True,
|
| 158 |
+
)
|
| 159 |
+
st.markdown('#### Outputs:')
|
| 160 |
+
res = unmasker(input_masked, tokenized=masking_level == 'SubWords', top_k=n_res)
|
| 161 |
+
if res:
|
| 162 |
+
res = [{'Prediction':r['token_str'], 'Completed Sentence':r['sequence'].replace('[SEP]', '').replace('[CLS]', ''), 'Score':r['score']} for r in res]
|
| 163 |
+
res_table = pd.DataFrame(res)
|
| 164 |
+
st.table(res_table)
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
# cols = st.beta_columns(len(tokens))
|
| 169 |
+
# genre = st.radio(
|
| 170 |
+
# 'Select token to mask:', tokens)
|
| 171 |
+
# for col, token in zip(cols, reversed(tokens)):
|
| 172 |
+
# col.text(token)
|
| 173 |
+
|
| 174 |
+
# st.text(tokens)
|
| 175 |
+
# res = unmasker(input_text)
|
| 176 |
+
# res_table = pd.DataFrame(res)
|
| 177 |
+
# st.table(res_table)
|
| 178 |
+
# st.text(res)
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
sentencepiece
|
| 3 |
+
transformers==4.4.2
|
| 4 |
+
tokenizers
|
| 5 |
+
pandas
|