Spaces:
Building
Building
File size: 28,560 Bytes
4623a33 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 |
import unittest
from unittest.mock import patch, MagicMock, mock_open, call
import os
import sys
# shutil is no longer needed as _move_indexed_file and index_directory are removed
from langchain_core.documents import Document
from langchain.schema import AIMessage
# Ensure the RAG_BOT module can be found
project_root_path = os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '..'))
if project_root_path not in sys.path:
sys.path.insert(0, project_root_path)
from RAG_BOT.vector_store import VectorStore
# Import DocumentProcessor for mocking
from RAG_BOT.document_processor import DocumentProcessor
class TestVectorStore(unittest.TestCase):
@patch('RAG_BOT.vector_store.DocumentProcessor')
@patch('RAG_BOT.vector_store.HuggingFaceEmbeddings')
@patch('RAG_BOT.vector_store.Chroma')
@patch('RAG_BOT.vector_store.Config')
@patch('RAG_BOT.vector_store.logger')
@patch('RAG_BOT.vector_store.os')
def setUp(self, mock_os, mock_logger, mock_config_cls, mock_chroma_cls, mock_hf_embeddings_cls, mock_document_processor_cls):
"""Set up for each test."""
# Configure mock Config instance
self.mock_config_instance = MagicMock()
self.mock_config_instance.VECTOR_STORE_PATH = "dummy/vector_store"
self.mock_config_instance.EMBEDDING_MODEL_NAME = "dummy_model"
self.mock_config_instance.DATA_PATH = "dummy/data" # Kept for now, though index_directory is removed
self.mock_config_instance.INDEXED_DATA_PATH = "dummy/indexed_data" # Kept for now
self.mock_config_instance.SEMANTIC_CHUNKING = True
self.mock_config_instance.CHUNK_SIZE = 1000 # Added for index_document tests
self.mock_config_instance.CHUNK_OVERLAP = 200 # Added for index_document tests
self.mock_config_instance.get_system_prompt.return_value = "System prompt:"
mock_config_cls.return_value = self.mock_config_instance
# Configure mock os
self.mock_os = mock_os
self.mock_os.path.exists.return_value = False # Default: new store
self.mock_os.listdir.return_value = [] # Default: empty directory
self.mock_os.path.join.side_effect = os.path.join # Use actual os.path.join
self.mock_os.path.abspath.side_effect = os.path.abspath
self.mock_os.path.dirname.side_effect = os.path.dirname
self.mock_os.path.basename.side_effect = os.path.basename
self.mock_os.path.isdir.return_value = True # Assume paths are dirs by default
# Configure mock Chroma
self.mock_chroma_instance = MagicMock()
mock_chroma_cls.return_value = self.mock_chroma_instance
# Configure mock Embeddings
self.mock_embeddings_instance = MagicMock()
mock_hf_embeddings_cls.return_value = self.mock_embeddings_instance
# Configure mock DocumentProcessor
self.mock_document_processor_instance = MagicMock()
mock_document_processor_cls.return_value = self.mock_document_processor_instance
self.mock_logger = mock_logger
# Initialize VectorStore - this will call the mocked dependencies
self.vector_store = VectorStore()
@patch('RAG_BOT.vector_store.DocumentProcessor') # Changed
@patch('RAG_BOT.vector_store.HuggingFaceEmbeddings')
@patch('RAG_BOT.vector_store.Chroma')
@patch('RAG_BOT.vector_store.Config')
@patch('RAG_BOT.vector_store.logger')
@patch('RAG_BOT.vector_store.os')
def test_init_new_vector_store(self, mock_os, mock_logger, mock_config_cls, mock_chroma_cls, mock_hf_embeddings_cls, mock_document_processor_cls): # Changed
"""Test initialization of a new vector store."""
mock_config_instance = MagicMock()
mock_config_instance.VECTOR_STORE_PATH = "new_store_path" # Use specific path for this test
mock_config_instance.EMBEDDING_MODEL_NAME = "dummy_model_new"
mock_config_cls.return_value = mock_config_instance
mock_os.path.exists.return_value = True # Dir exists
mock_os.listdir.return_value = [] # Dir is empty, so new store
mock_os.path.join.side_effect = os.path.join
mock_os.makedirs.return_value = None
mock_embeddings_instance = MagicMock()
mock_hf_embeddings_cls.return_value = mock_embeddings_instance
mock_chroma_instance = MagicMock()
mock_chroma_cls.return_value = mock_chroma_instance
# Re-initialize to test this specific scenario
vs = VectorStore(persist_directory="new_store_path")
# Check HuggingFaceEmbeddings initialization
mock_hf_embeddings_cls.assert_called_with(model_name="dummy_model_new")
# Check Chroma initialization for new store
mock_chroma_cls.assert_called_with(
persist_directory="new_store_path",
embedding_function=mock_embeddings_instance
)
mock_logger.info.assert_any_call("Embedding model initialized successfully.")
mock_logger.info.assert_any_call(f"New vector store created successfully at: new_store_path")
self.assertIsNotNone(vs.document_processor) # Changed
@patch('RAG_BOT.vector_store.DocumentProcessor') # Added DocumentProcessor mock
@patch('RAG_BOT.vector_store.HuggingFaceEmbeddings')
@patch('RAG_BOT.vector_store.Chroma')
@patch('RAG_BOT.vector_store.Config')
@patch('RAG_BOT.vector_store.logger')
@patch('RAG_BOT.vector_store.os')
def test_init_load_existing_vector_store(self, mock_os, mock_logger, mock_config_cls, mock_chroma_cls, mock_hf_embeddings_cls, mock_document_processor_cls): # Added mock_document_processor_cls
"""Test initialization loading an existing vector store."""
mock_config_instance = MagicMock()
mock_config_instance.VECTOR_STORE_PATH = "existing_store_path"
mock_config_instance.EMBEDDING_MODEL_NAME = "dummy_model_existing"
mock_config_cls.return_value = mock_config_instance
mock_os.path.exists.return_value = True
mock_os.listdir.return_value = ["some_file.db"] # Non-empty dir
mock_os.path.join.side_effect = os.path.join
mock_os.makedirs.return_value = None
mock_embeddings_instance = MagicMock()
mock_hf_embeddings_cls.return_value = mock_embeddings_instance
mock_chroma_instance = MagicMock()
mock_chroma_cls.return_value = mock_chroma_instance
vs = VectorStore(persist_directory="existing_store_path")
mock_hf_embeddings_cls.assert_called_with(model_name="dummy_model_existing")
mock_chroma_cls.assert_called_with(
persist_directory="existing_store_path",
embedding_function=mock_embeddings_instance
)
mock_logger.info.assert_any_call(f"Existing vector store loaded successfully from: existing_store_path")
self.assertIsNotNone(vs.document_processor) # Added assertion for document_processor
@patch('RAG_BOT.vector_store.DocumentProcessor') # Added DocumentProcessor mock
@patch('RAG_BOT.vector_store.HuggingFaceEmbeddings')
@patch('RAG_BOT.vector_store.Chroma')
@patch('RAG_BOT.vector_store.Config')
@patch('RAG_BOT.vector_store.logger')
@patch('RAG_BOT.vector_store.os')
def test_init_load_error_fallback_to_new(self, mock_os, mock_logger, mock_config_cls, mock_chroma_cls, mock_hf_embeddings_cls, mock_document_processor_cls): # Added mock_document_processor_cls
"""Test fallback to new store creation if loading existing fails."""
mock_config_instance = MagicMock()
mock_config_instance.VECTOR_STORE_PATH = "fallback_store_path"
mock_config_instance.EMBEDDING_MODEL_NAME = "dummy_model_fallback"
mock_config_cls.return_value = mock_config_instance
mock_os.path.exists.return_value = True
mock_os.listdir.return_value = ["some_file.db"] # Non-empty dir
mock_os.path.join.side_effect = os.path.join
mock_os.makedirs.return_value = None
mock_embeddings_instance = MagicMock()
mock_hf_embeddings_cls.return_value = mock_embeddings_instance
mock_chroma_instance_success = MagicMock() # For the successful creation
# Simulate Chroma load failure then success on new creation
mock_chroma_cls.side_effect = [Exception("Load failed"), mock_chroma_instance_success]
vs = VectorStore(persist_directory="fallback_store_path")
mock_hf_embeddings_cls.assert_called_with(model_name="dummy_model_fallback")
self.assertEqual(mock_chroma_cls.call_count, 2)
# First call (failed load)
mock_chroma_cls.assert_any_call(
persist_directory="fallback_store_path",
embedding_function=mock_embeddings_instance
)
# Second call (successful creation)
mock_chroma_cls.assert_any_call(
persist_directory="fallback_store_path",
embedding_function=mock_embeddings_instance
)
mock_logger.error.assert_any_call(f"Error loading existing vector store from fallback_store_path: Load failed", exc_info=True)
mock_logger.warning.assert_any_call(f"Attempting to create a new vector store at fallback_store_path due to loading error.")
mock_logger.info.assert_any_call("New vector store created after load failure.")
self.assertIsNotNone(vs.document_processor) # Added assertion for document_processor
@patch('RAG_BOT.vector_store.DocumentProcessor') # Added DocumentProcessor mock
@patch('RAG_BOT.vector_store.HuggingFaceEmbeddings')
@patch('RAG_BOT.vector_store.Chroma')
@patch('RAG_BOT.vector_store.Config')
@patch('RAG_BOT.vector_store.logger')
@patch('RAG_BOT.vector_store.os')
def test_init_critical_creation_failure(self, mock_os, mock_logger, mock_config_cls, mock_chroma_cls, mock_hf_embeddings_cls, mock_document_processor_cls): # Added mock_document_processor_cls
"""Test critical failure during new vector store creation."""
mock_config_instance = MagicMock()
mock_config_instance.VECTOR_STORE_PATH = "critical_fail_path"
mock_config_instance.EMBEDDING_MODEL_NAME = "dummy_model_critical"
mock_config_cls.return_value = mock_config_instance
mock_os.path.exists.return_value = True # Dir exists
mock_os.listdir.return_value = [] # Dir is empty, new store attempt
mock_os.path.join.side_effect = os.path.join
mock_os.makedirs.return_value = None
mock_hf_embeddings_cls.return_value = MagicMock()
mock_chroma_cls.side_effect = Exception("Critical creation failed")
with self.assertRaises(Exception) as context:
VectorStore(persist_directory="critical_fail_path")
self.assertTrue("Critical creation failed" in str(context.exception))
mock_hf_embeddings_cls.assert_called_with(model_name="dummy_model_critical")
mock_logger.critical.assert_any_call(f"Failed to create new vector store at critical_fail_path: Critical creation failed", exc_info=True)
def test_get_vectordb(self):
"""Test the get_vectordb getter."""
self.assertEqual(self.vector_store.get_vectordb(), self.mock_chroma_instance)
@patch('RAG_BOT.vector_store.logger')
def test_add_documents_success(self, mock_logger):
"""Test adding documents successfully."""
docs = [Document(page_content="doc1", metadata={"source": "source1.txt"})]
self.vector_store.add_documents(docs)
self.mock_chroma_instance.add_documents.assert_called_once_with(documents=docs)
mock_logger.info.assert_called_with("Vector store updated with 1 document chunks from source: source1.txt") # os.path.basename
@patch('RAG_BOT.vector_store.logger')
def test_add_documents_empty_list(self, mock_logger):
"""Test adding an empty list of documents."""
#self.mock_logger.reset_mock()
self.vector_store.add_documents([])
self.mock_chroma_instance.add_documents.assert_not_called()
mock_logger.warning.assert_called_with("Attempted to add an empty list of documents. Skipping.")
@patch('RAG_BOT.vector_store.logger')
def test_add_documents_failure(self, mock_logger):
"""Test failure during adding documents to ChromaDB."""
docs = [Document(page_content="doc1", metadata={"source": "source_fail.txt"})]
self.mock_chroma_instance.add_documents.side_effect = Exception("DB add error")
self.vector_store.add_documents(docs)
mock_logger.error.assert_called_with("Failed to add documents from source source_fail.txt to ChromaDB: DB add error", exc_info=True) # os.path.basename
def test_document_exists_true(self):
"""Test document_exists when document is found.""" # Renamed
self.mock_chroma_instance.get.return_value = {"ids": ["id1"], "metadatas": [], "documents": []}
exists = self.vector_store.document_exists("2023-01-01", "en") # Renamed
self.assertTrue(exists)
self.mock_chroma_instance.get.assert_called_once_with(
where={"$and": [{"date": "2023-01-01"}, {"language": "en"}]},
limit=1,
include=[]
)
def test_document_exists_false(self):
"""Test document_exists when document is not found.""" # Renamed
self.mock_chroma_instance.get.return_value = {"ids": [], "metadatas": [], "documents": []}
exists = self.vector_store.document_exists("2023-01-02", "en") # Renamed
self.assertFalse(exists)
@patch('RAG_BOT.vector_store.logger')
def test_document_exists_no_date(self, mock_logger):
"""Test document_exists with no date string.""" # Renamed
exists = self.vector_store.document_exists(None, "en") # Renamed
self.assertFalse(exists)
mock_logger.warning.assert_called_with("Cannot check for existing document without a date string. Assuming it does not exist.")
@patch('RAG_BOT.vector_store.logger')
def test_document_exists_no_language(self, mock_logger):
"""Test document_exists with no language string.""" # Renamed
self.mock_logger.reset_mock()
exists = self.vector_store.document_exists("2023-01-01", None) # Renamed
self.assertFalse(exists)
mock_logger.warning.assert_called_with("Cannot check for existing document without language metadata. Assuming it does not exist.")
@patch('RAG_BOT.vector_store.logger')
def test_document_exists_db_error(self, mock_logger):
"""Test document_exists when ChromaDB get fails.""" # Renamed
self.mock_logger.reset_mock()
self.mock_chroma_instance.get.side_effect = Exception("DB get error")
exists = self.vector_store.document_exists("2023-01-03", "en") # Renamed
self.assertFalse(exists) # Should assume not exists on error
mock_logger.error.assert_called_with(
"Error checking ChromaDB for existing date 2023-01-03 and language en: DB get error. Assuming document does not exist.",
exc_info=True
)
@patch.object(VectorStore, 'document_exists')
@patch('RAG_BOT.vector_store.logger')
def test_index_document_semantic_success(self, mock_logger, mock_doc_exists):
"""Test index_document for a new document with semantic chunking."""
mock_doc_exists.return_value = False
docs_in = [Document(page_content="doc content", metadata={"source": "test.doc", "date": "2023-01-01", "language": "en"})] # Generic doc
chunks_out = [Document(page_content="chunk1", metadata={"source": "test.doc", "date": "2023-01-01", "language": "en"})]
# Ensure the mock_document_processor_instance from setUp is used and configured
self.mock_document_processor_instance.semantic_chunking.return_value = chunks_out # Use mock_document_processor_instance
self.mock_document_processor_instance.semantic_chunking.side_effect = None
# self.mock_config_instance.SEMANTIC_CHUNKING = True # This should be set in setUp or per test if varied
was_indexed = self.vector_store.index_document(docs_in, semantic_chunk=True) # Renamed
self.assertTrue(was_indexed)
mock_doc_exists.assert_called_once_with("2023-01-01", "en")
self.mock_document_processor_instance.semantic_chunking.assert_called_once_with(
docs_in,
chunk_size=self.mock_config_instance.CHUNK_SIZE,
chunk_overlap=self.mock_config_instance.CHUNK_OVERLAP,
model_name=self.mock_config_instance.EMBEDDING_MODEL_NAME
)
self.mock_chroma_instance.add_documents.assert_called_once_with(documents=chunks_out)
# Assert no error or warning logs that would indicate a False return path
mock_logger.error.assert_not_called()
mock_logger.warning.assert_not_called()
# Assert all expected info logs for the success path
mock_logger.info.assert_any_call("Proceeding with chunking and indexing for test.doc.")
# The add_documents method also logs an info message
mock_logger.info.assert_any_call(f"Vector store updated with {len(chunks_out)} document chunks from source: test.doc")
mock_logger.info.assert_any_call(f"Successfully indexed {len(chunks_out)} chunks from test.doc.")
@patch.object(VectorStore, 'document_exists')
def test_index_document_non_semantic_success(self, mock_doc_exists):
"""Test index_document for a new document with non-semantic chunking.""" # Renamed
self.mock_logger.reset_mock()
mock_doc_exists.return_value = False
docs_in = [Document(page_content="doc content", metadata={"source": "test.doc", "date": "2023-01-02", "language": "hi"})] # Generic doc
chunks_out = [Document(page_content="chunk_doc", metadata={"source": "test.doc", "date": "2023-01-02", "language": "hi"})]
self.mock_document_processor_instance.split_text.return_value = chunks_out
self.mock_document_processor_instance.split_text.side_effect = None
self.mock_chroma_instance.add_documents.side_effect = None
was_indexed = self.vector_store.index_document(docs_in, semantic_chunk=False) # Renamed, removed chunk_size/overlap args
self.assertTrue(was_indexed)
mock_doc_exists.assert_called_once_with("2023-01-02", "hi")
self.mock_document_processor_instance.split_text.assert_called_once_with( # Use mock_document_processor_instance
docs_in,
chunk_size=self.mock_config_instance.CHUNK_SIZE,
chunk_overlap=self.mock_config_instance.CHUNK_OVERLAP
)
self.mock_chroma_instance.add_documents.assert_called_once_with(documents=chunks_out)
# Assert no error or warning logs that would indicate a False return path
self.mock_logger.error.assert_not_called()
self.mock_logger.warning.assert_not_called()
@patch.object(VectorStore, 'document_exists') # Renamed
def test_index_document_already_exists(self, mock_doc_exists):
"""Test index_document skips if document already exists.""" # Renamed
self.mock_logger.reset_mock()
mock_doc_exists.return_value = True
docs_in = [Document(page_content="content", metadata={"source": "exist.doc", "date": "2023-01-03", "language": "en"})]
was_indexed = self.vector_store.index_document(docs_in) # Renamed
self.assertFalse(was_indexed)
mock_doc_exists.assert_called_once_with("2023-01-03", "en")
self.mock_document_processor_instance.semantic_chunking.assert_not_called() # Check generic processor
self.mock_document_processor_instance.split_text.assert_not_called() # Check generic processor
self.mock_chroma_instance.add_documents.assert_not_called()
self.mock_logger.info.assert_called_with("Document with date 2023-01-03 and language en (source: exist.doc) already indexed. Skipping.")
def test_index_document_empty_input(self):
"""Test index_document with empty document list.""" # Renamed
self.mock_logger.reset_mock()
was_indexed = self.vector_store.index_document([]) # Renamed
self.assertFalse(was_indexed)
self.mock_logger.warning.assert_called_with("Attempted to index an empty list of documents. Skipping.")
@patch.object(VectorStore, 'document_exists') # Renamed
def test_index_document_no_chunks_generated(self, mock_doc_exists):
"""Test index_document when no chunks are generated.""" # Renamed
self.mock_logger.reset_mock()
mock_doc_exists.return_value = False
docs_in = [Document(page_content="doc content", metadata={"source": "no_chunks.doc", "date": "2023-01-04", "language": "en"})]
self.mock_document_processor_instance.semantic_chunking.return_value = [] # No chunks
was_indexed = self.vector_store.index_document(docs_in, semantic_chunk=True) # Renamed
self.assertFalse(was_indexed)
self.mock_logger.warning.assert_called_with("No text chunks generated after processing no_chunks.doc. Nothing to index.")
@patch.object(VectorStore, 'document_exists') # Renamed
def test_index_document_chunking_error(self, mock_doc_exists):
"""Test index_document when chunking raises an error.""" # Renamed
self.mock_logger.reset_mock()
mock_doc_exists.return_value = False
docs_in = [Document(page_content="doc content", metadata={"source": "chunk_error.doc", "date": "2023-01-05", "language": "en"})]
self.mock_document_processor_instance.semantic_chunking.side_effect = Exception("Chunking error")
was_indexed = self.vector_store.index_document(docs_in, semantic_chunk=True) # Renamed
self.assertFalse(was_indexed)
self.mock_logger.error.assert_called_with("Error during chunking or adding documents for chunk_error.doc: Chunking error", exc_info=True)
self.mock_logger.info.assert_any_call("Proceeding with chunking and indexing for chunk_error.doc.")
# Removed all _move_indexed_file tests as the method is removed
# Removed all index_directory tests as the method is removed
def test_log_all_indexed_metadata_success(self):
"""Test log_all_indexed_metadata with data."""
self.mock_logger.reset_mock()
self.mock_chroma_instance.get.return_value = {
"ids": ["id1", "id2", "id3"],
"metadatas": [
{"date": "2023-01-01", "is_avyakt": True, "language": "en"},
{"date": "2023-01-01", "is_avyakt": True, "language": "en"},
{"date": "2023-01-02", "is_avyakt": False, "language": "hi"},
]
}
self.vector_store.log_all_indexed_metadata()
self.mock_logger.info.assert_any_call("Retrieved metadata for 3 documents.")
self.mock_logger.info.assert_any_call("Date: 2023-01-01 - Type: Avyakt, Language: en, Count: 2")
self.mock_logger.info.assert_any_call("Date: 2023-01-02 - Type: Sakar/Other, Language: hi, Count: 1")
def test_log_all_indexed_metadata_empty_db(self):
"""Test log_all_indexed_metadata with an empty database."""
self.mock_logger.reset_mock()
self.mock_chroma_instance.get.return_value = {"ids": [], "metadatas": []}
self.vector_store.log_all_indexed_metadata()
self.mock_logger.info.assert_any_call("ChromaDB index appears to be empty. No metadata to retrieve.")
def test_log_all_indexed_metadata_db_error(self):
"""Test log_all_indexed_metadata when ChromaDB get fails."""
self.mock_logger.reset_mock()
self.mock_chroma_instance.get.side_effect = Exception("DB get all error")
self.vector_store.log_all_indexed_metadata()
self.mock_logger.error.assert_called_with("Error retrieving all metadata from ChromaDB: DB get all error", exc_info=True)
@patch('RAG_BOT.vector_store.ChatGoogleGenerativeAI')
@patch('RAG_BOT.vector_store.PromptTemplate')
# Removed RunnablePassthrough mock as it's not directly used in the chain logic being tested here
def test_query_index_success(self, mock_prompt_template_cls, mock_chat_google_cls):
"""Test query_index successfully returns a response."""
mock_llm_instance = MagicMock()
mock_llm_instance.invoke.return_value = AIMessage(content="Test LLM response")
mock_chat_google_cls.return_value = mock_llm_instance
mock_prompt_instance = MagicMock()
mock_prompt_template_cls.return_value = mock_prompt_instance
# Mock retriever and its invoke
mock_retriever = MagicMock()
retrieved_docs = [Document(page_content="context doc 1")]
mock_retriever.invoke.return_value = retrieved_docs
self.mock_chroma_instance.as_retriever.return_value = mock_retriever
query = "What is love?"
response = self.vector_store.query_index(query, k=5)
self.assertEqual(response, "Test LLM response")
self.mock_chroma_instance.as_retriever.assert_called_once_with(
search_type="similarity",
search_kwargs={"k": 5}
)
mock_retriever.invoke.assert_called_once_with(query)
mock_prompt_template_cls.assert_called_once_with(
input_variables=["context", "question"],
template="System prompt:\n\nContext:\n{context}\n\nQuestion: {question}" # Assuming "System prompt:" is from mock_config
)
self.mock_config_instance.get_system_prompt.assert_called_with(language_code="en")
mock_llm_instance.invoke.assert_called_once_with({"context": "context doc 1", "question": query})
def test_query_index_vectordb_not_initialized(self):
"""Test query_index when vectordb is not initialized."""
self.mock_logger.reset_mock()
original_vectordb = self.vector_store.vectordb # Store original
self.vector_store.vectordb = None # Simulate uninitialized DB
response = self.vector_store.query_index("test query")
self.assertEqual(response, "Error: Vector Store is not available.")
self.mock_logger.error.assert_called_with("VectorDB not initialized. Cannot perform query.")
@patch('RAG_BOT.vector_store.ChatGoogleGenerativeAI')
def test_query_index_with_date_filter(self, mock_chat_google_cls):
"""Test query_index with a valid date filter."""
mock_llm_instance = MagicMock()
mock_llm_instance.invoke.return_value = AIMessage(content="Filtered response")
mock_chat_google_cls.return_value = mock_llm_instance
mock_retriever = MagicMock()
mock_retriever.invoke.return_value = []
self.mock_chroma_instance.as_retriever.return_value = mock_retriever
self.vector_store.query_index("query", date_filter="2023-01-01")
self.mock_chroma_instance.as_retriever.assert_called_with(
search_type="similarity",
search_kwargs={"k": 25, "filter": {"date": "2023-01-01"}} # Default k is 25
)
self.mock_config_instance.get_system_prompt.assert_called_with(language_code="en")
def test_query_index_invalid_date_filter(self):
"""Test query_index with an invalid date filter format."""
self.mock_logger.reset_mock()
response = self.vector_store.query_index("query", date_filter="01-01-2023")
self.assertEqual(response, "Error: Invalid date format for filter. Please use YYYY-MM-DD.")
self.mock_logger.error.assert_called_with("Invalid date format provided: 01-01-2023. Should be YYYY-MM-DD.")
@patch('RAG_BOT.vector_store.ChatGoogleGenerativeAI')
def test_query_index_llm_error(self, mock_chat_google_cls):
self.mock_logger.reset_mock()
"""Test query_index when the LLM call fails."""
mock_llm_instance = MagicMock()
mock_llm_instance.invoke.side_effect = Exception("LLM API error")
mock_chat_google_cls.return_value = mock_llm_instance
mock_retriever = MagicMock()
mock_retriever.invoke.return_value = [Document(page_content="context")]
self.mock_chroma_instance.as_retriever.return_value = mock_retriever
response = self.vector_store.query_index("query")
self.assertEqual(response, "Sorry, an error occurred while processing your query.")
self.mock_logger.error.assert_called_with("Error during query execution: LLM API error", exc_info=True)
self.mock_config_instance.get_system_prompt.assert_called_with(language_code="en")
if __name__ == '__main__':
unittest.main()
|