File size: 31,099 Bytes
9bc4638 5bc3a57 9bc4638 5bc3a57 9bc4638 5bc3a57 9bc4638 6e60611 5bc3a57 eafda84 5bc3a57 9bc4638 5bc3a57 9bc4638 5bc3a57 9bc4638 e508568 9bc4638 e508568 5bc3a57 e508568 5bc3a57 e508568 5bc3a57 e508568 5bc3a57 e508568 5bc3a57 e508568 5bc3a57 e508568 5bc3a57 e508568 5bc3a57 9bc4638 1affb38 e508568 9bc4638 e508568 1affb38 9bc4638 1affb38 9bc4638 e508568 1affb38 e508568 1affb38 9bc4638 1affb38 e508568 9bc4638 1affb38 e508568 1affb38 e508568 1affb38 5bc3a57 1affb38 e508568 9bc4638 5bc3a57 2a466e4 5bc3a57 9bc4638 e508568 9bc4638 5bc3a57 e508568 9bc4638 5bc3a57 9bc4638 1affb38 e508568 1affb38 5bc3a57 1affb38 e508568 1affb38 e508568 1affb38 9bc4638 1affb38 9bc4638 1affb38 9bc4638 1affb38 9bc4638 1affb38 9bc4638 1affb38 e508568 9bc4638 e508568 9bc4638 e508568 1affb38 fa0b563 1affb38 9bc4638 5bc3a57 9bc4638 5bc3a57 e508568 1affb38 5bc3a57 fa0b563 1affb38 fa0b563 1affb38 9bc4638 1affb38 e508568 1affb38 fa0b563 1affb38 fa0b563 1affb38 5bc3a57 1affb38 9bc4638 1affb38 2a466e4 1affb38 9bc4638 1affb38 9bc4638 1affb38 2a466e4 1affb38 2a466e4 1affb38 2a466e4 1affb38 2a466e4 1affb38 fa0b563 1affb38 9bc4638 1affb38 9bc4638 5bc3a57 9bc4638 e508568 9bc4638 1affb38 e508568 9bc4638 1affb38 9bc4638 e508568 9bc4638 1affb38 9bc4638 1affb38 9bc4638 1affb38 2a466e4 1affb38 2a466e4 e508568 2a466e4 1affb38 9bc4638 1affb38 2a466e4 1affb38 5bc3a57 1affb38 9bc4638 e508568 1affb38 9bc4638 1affb38 9bc4638 1affb38 5bc3a57 1affb38 5bc3a57 1affb38 9bc4638 5bc3a57 1affb38 9bc4638 1affb38 9bc4638 1affb38 9bc4638 1affb38 9bc4638 1affb38 9bc4638 1affb38 9bc4638 1affb38 9bc4638 fa0b563 1affb38 5bc3a57 1affb38 9bc4638 1affb38 9bc4638 1affb38 5bc3a57 1affb38 fa0b563 1affb38 9bc4638 1affb38 9bc4638 1affb38 e508568 9bc4638 1affb38 9bc4638 e508568 9bc4638 1affb38 9bc4638 1affb38 e508568 9bc4638 1affb38 e508568 9bc4638 1affb38 9bc4638 1affb38 9bc4638 1affb38 9bc4638 1affb38 9bc4638 1affb38 9bc4638 1affb38 9bc4638 1affb38 9bc4638 1affb38 9bc4638 1affb38 9bc4638 1affb38 9bc4638 1affb38 9bc4638 e508568 9bc4638 1affb38 9bc4638 1affb38 9bc4638 1affb38 9bc4638 1affb38 9bc4638 2a466e4 9bc4638 1affb38 e508568 9bc4638 5bc3a57 9bc4638 1affb38 5bc3a57 1affb38 5bc3a57 9bc4638 1affb38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import copy
import os
from datetime import datetime
import gradio as gr
# Removed GPU-specific environment variable setting
# os.environ["TORCH_CUDNN_SDPA_ENABLED"] = "0,1,2,3,4,5,6,7"
import tempfile
import cv2
import matplotlib.pyplot as plt
import numpy as np
# Removed spaces decorator import for CPU-only demo
# import spaces # Removed spaces import
import torch
from moviepy.editor import ImageSequenceClip
from PIL import Image
from sam2.build_sam import build_sam2_video_predictor
# Description
title = "<center><strong><font size='8'>EdgeTAM<font></strong> <a href='https://github.com/facebookresearch/EdgeTAM'><font size='6'>[GitHub]</font></a> </center>"
description_p = """# Instructions
<ol>
<li> Upload one video or click one example video</li>
<li> Click 'include' point type, select the object to segment and track</li>
<li> Click 'exclude' point type (optional), select the area you want to avoid segmenting and tracking</li>
<li> Click the 'Track' button to obtain the masked video </li>
</ol>
"""
# examples - Keep examples, they are input files
examples = [
["examples/01_dog.mp4"],
["examples/02_cups.mp4"],
["examples/03_blocks.mp4"],
["examples/04_coffee.mp4"],
["examples/05_default_juggle.mp4"],
["examples/01_breakdancer.mp4"],
["examples/02_hummingbird.mp4"],
["examples/03_skateboarder.mp4"],
["examples/04_octopus.mp4"],
["examples/05_landing_dog_soccer.mp4"],
["examples/06_pingpong.mp4"],
["examples/07_snowboarder.mp4"],
["examples/08_driving.mp4"],
["examples/09_birdcartoon.mp4"],
["examples/10_cloth_magic.mp4"],
["examples/11_polevault.mp4"],
["examples/12_hideandseek.mp4"],
["examples/13_butterfly.mp4"],
["examples/14_social_dog_training.mp4"],
["examples/15_cricket.mp4"],
["examples/16_robotarm.mp4"],
["examples/17_childrendancing.mp4"],
["examples/18_threedogs.mp4"],
["examples/19_cyclist.mp4"],
["examples/20_doughkneading.mp4"],
["examples/21_biker.mp4"],
["examples/22_dogskateboarder.mp4"],
["examples/23_racecar.mp4"],
["examples/24_clownfish.mp4"],
]
OBJ_ID = 0
sam2_checkpoint = "checkpoints/edgetam.pt"
model_cfg = "edgetam.yaml"
# Ensure predictor is explicitly built for CPU
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device="cpu")
# Removed .to("cuda") - predictor is already on CPU from build_sam2_video_predictor
# predictor.to("cuda")
print("predictor loaded on CPU")
# Removed CUDA specific autocast and backend settings
# torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
# if torch.cuda.is_available() and torch.cuda.get_device_properties(0).major >= 8:
# torch.backends.cuda.matmul.allow_tf32 = True
# torch.backends.cudnn.allow_tf32 = True
# elif not torch.cuda.is_available():
# print("Warning: CUDA not available. Running on CPU.")
def get_video_fps(video_path):
"""Gets the frames per second of a video file."""
if video_path is None or not os.path.exists(video_path):
print(f"Warning: Video file not found at {video_path}")
return None
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
print(f"Error: Could not open video file {video_path}.")
return None
fps = cap.get(cv2.CAP_PROP_FPS)
cap.release() # Release the capture object
return fps
def reset(session_state):
"""Resets the UI and session state."""
print("Resetting demo.")
session_state["input_points"] = []
session_state["input_labels"] = []
# Reset the predictor state if it exists
if session_state["inference_state"] is not None:
try:
# Assuming predictor.reset_state handles clearing current masks/features
predictor.reset_state(session_state["inference_state"])
# Explicitly delete or re-init the state object if a full reset is intended
# This depends on how predictor.reset_state works. Setting to None is safest for a full reset.
session_state["inference_state"] = None
except Exception as e:
print(f"Error resetting predictor state: {e}")
session_state["inference_state"] = None # Force-clear on error
session_state["first_frame"] = None
session_state["all_frames"] = None
session_state["inference_state"] = None # Ensure state is None after a full reset
# Also reset video path if stored
session_state["video_path"] = None
# Resetting UI components and disabling buttons
return (
None, # video_in (clears the video player)
gr.update(open=True), # video_in_drawer (opens accordion)
None, # points_map (clears the image)
None, # output_image (clears the image)
gr.update(value=None, visible=False), # output_video (hides and clears)
gr.update(interactive=False), # propagate_btn disabled
gr.update(interactive=False), # clear_points_btn disabled
gr.update(interactive=False), # reset_btn disabled
session_state, # return updated session state
)
def clear_points(session_state):
"""Clears selected points and resets segmentation on the first frame."""
print("Clearing points.")
session_state["input_points"] = []
session_state["input_labels"] = []
# Reset the predictor state to clear internal masks/features
# This typically doesn't remove the video context, just the mask predictions
if session_state["inference_state"] is not None:
try:
# Assuming reset_state handles clearing current masks/features
predictor.reset_state(session_state["inference_state"])
print("Predictor state reset for clearing points.")
# If you need to re-initialize the state for the *same* video after clearing points,
# you might need to call predictor.init_state again here, using the stored video_path.
# Since we are on CPU, device="cpu" is implicit now.
if session_state["video_path"] is not None:
session_state["inference_state"] = predictor.init_state(video_path=session_state["video_path"])
print("Predictor state re-initialized after clearing points.")
else:
print("Warning: Could not re-initialize state after clear_points (video_path missing).")
session_state["inference_state"] = None # Ensure state is None if video_path is gone
except Exception as e:
print(f"Error resetting predictor state during clear_points: {e}")
# If reset fails, this might leave old masks. Force-clear state on error.
session_state["inference_state"] = None
# Return the original first frame image for points_map and clear the output_image
first_frame_img = session_state["first_frame"] if session_state["first_frame"] is not None else None
return (
first_frame_img, # points_map shows original first frame (no points yet)
None, # output_image cleared (no mask)
gr.update(value=None, visible=False), # output_video hidden
session_state, # return updated session state
)
# Removed @spaces.GPU decorator
def preprocess_video_in(video_path, session_state):
"""Loads video frames and initializes the predictor state."""
print(f"Processing video: {video_path}")
if video_path is None or not os.path.exists(video_path):
print("No video path provided or file not found.")
# Reset state and UI elements if input is invalid
# Need to return updates for the buttons as well
return (
gr.update(open=True), None, None, gr.update(value=None, visible=False),
gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False),
{ # Reset session state
"first_frame": None, "all_frames": None, "input_points": [],
"input_labels": [], "inference_state": None, "video_path": None,
}
)
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
print(f"Error: Could not open video file {video_path}.")
return (
gr.update(open=True), None, None, gr.update(value=None, visible=False),
gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False),
{ # Reset session state
"first_frame": None, "all_frames": None, "input_points": [],
"input_labels": [], "inference_state": None, "video_path": None,
}
)
first_frame = None
all_frames = []
while True:
ret, frame = cap.read()
if not ret:
break
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
all_frames.append(frame)
if first_frame is None:
first_frame = frame
cap.release()
if not all_frames:
print(f"Error: No frames read from video file {video_path}.")
return (
gr.update(open=True), None, None, gr.update(value=None, visible=False),
gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False),
{ # Reset session state
"first_frame": None, "all_frames": None, "input_points": [],
"input_labels": [], "inference_state": None, "video_path": None,
}
)
# Update session state with frames and path
session_state["first_frame"] = copy.deepcopy(first_frame) # Store a copy
session_state["all_frames"] = all_frames
session_state["video_path"] = video_path # Store video path
session_state["input_points"] = []
session_state["input_labels"] = []
# Initialize state WITHOUT the device argument (uses predictor's device, which is CPU)
session_state["inference_state"] = predictor.init_state(video_path=video_path)
print("Video loaded and predictor state initialized on CPU.")
# Enable buttons after successful load
return [
gr.update(open=False), # video_in_drawer
first_frame, # points_map (shows first frame)
None, # output_image (cleared initially)
gr.update(value=None, visible=False), # output_video (hidden initially)
gr.update(interactive=True), # propagate_btn enabled
gr.update(interactive=True), # clear_points_btn enabled
gr.update(interactive=True), # reset_btn enabled
session_state, # session_state
]
# Removed @spaces.GPU decorator
def segment_with_points(
point_type,
session_state,
evt: gr.SelectData,
):
"""Adds a point prompt and performs segmentation on the first frame."""
# Ensure we have state and first frame
if session_state["first_frame"] is None or session_state["inference_state"] is None:
print("Error: Cannot segment. No video loaded or inference state missing.")
# Return current states to avoid errors, without changing UI much
return (
session_state.get("first_frame"), # points_map (show first frame if exists)
None, # output_image (keep cleared)
session_state,
)
# evt.index is the (x, y) coordinate tuple
click_coords = evt.index
print(f"Clicked at: {click_coords} ({point_type})")
session_state["input_points"].append(click_coords)
if point_type == "include":
session_state["input_labels"].append(1)
elif point_type == "exclude":
session_state["input_labels"].append(0)
# Get the first frame as a PIL image for drawing
first_frame_pil = Image.fromarray(session_state["first_frame"]).convert("RGBA")
w, h = first_frame_pil.size
# Define the circle radius
fraction = 0.01
radius = max(2, int(fraction * min(w, h))) # Ensure minimum radius of 2
# Create a transparent layer to draw points
transparent_layer_points = np.zeros((h, w, 4), dtype=np.uint8)
# Draw points on the transparent layer
for index, track in enumerate(session_state["input_points"]):
# Ensure coordinates are integers for cv2.circle
point_coords = (int(track[0]), int(track[1]))
# Ensure color is RGBA (0-255)
if session_state["input_labels"][index] == 1:
cv2.circle(transparent_layer_points, point_coords, radius, (0, 255, 0, 255), -1) # Green for include
else:
cv2.circle(transparent_layer_points, point_coords, radius, (255, 0, 0, 255), -1) # Red for exclude
# Convert the transparent layer back to an image and composite onto the first frame
transparent_layer_points_pil = Image.fromarray(transparent_layer_points, "RGBA")
# Combine the first frame image with the points layer for the points_map output
# points_map shows the first frame *with the points you added*.
selected_point_map_img = Image.alpha_composite(
first_frame_pil.copy(), transparent_layer_points_pil
)
# Prepare points and labels as tensors on the correct device (CPU in this version)
points = np.array(session_state["input_points"], dtype=np.float32)
labels = np.array(session_state["input_labels"], np.int32)
# Ensure tensors are on the correct device (CPU)
device = next(predictor.parameters()).device # Get the device the model is on (should be "cpu")
points_tensor = torch.tensor(points, dtype=torch.float32, device=device).unsqueeze(0) # Add batch dim
labels_tensor = torch.tensor(labels, dtype=torch.int32, device=device).unsqueeze(0) # Add batch dim
first_frame_output_img = None # Initialize output mask image as None in case of error
try:
# Note: predictor.add_new_points modifies the internal inference_state
_, _, out_mask_logits = predictor.add_new_points(
inference_state=session_state["inference_state"],
frame_idx=0, # Always segment on the first frame initially
obj_id=OBJ_ID,
points=points_tensor,
labels=labels_tensor,
)
# Process logits: detach from graph, move to CPU, apply threshold
# out_mask_logits is a list of tensors [tensor([batch_size, H, W])] for the requested obj_id
# Access the result for the first object (index 0) and the first item in batch (index 0)
mask_tensor = (out_mask_logits[0][0].detach().cpu() > 0.0) # Move to CPU before converting to numpy
mask_numpy = mask_tensor.numpy() # Convert to numpy
# Get the mask image (RGBA)
mask_image_pil = show_mask(mask_numpy, obj_id=OBJ_ID) # show_mask returns RGBA PIL Image
# Composite the mask onto the first frame for the output_image
# output_image shows the first frame *with the segmentation mask result*.
first_frame_output_img = Image.alpha_composite(first_frame_pil.copy(), mask_image_pil)
except Exception as e:
print(f"Error during segmentation on first frame: {e}")
# On error, first_frame_output_img remains None
# Removed CUDA cache clearing call
# if torch.cuda.is_available():
# torch.cuda.empty_cache()
return selected_point_map_img, first_frame_output_img, session_state
def show_mask(mask, obj_id=None, random_color=False, convert_to_image=True):
"""Helper function to visualize a mask."""
# Ensure mask is a numpy array (and boolean)
if isinstance(mask, torch.Tensor):
mask = mask.detach().cpu().numpy() # Ensure it's on CPU and converted to numpy
# Convert potential float/int mask to boolean mask
mask = mask.astype(bool)
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) # RGBA with 0.6 alpha
else:
cmap = plt.get_cmap("tab10")
cmap_idx = 0 if obj_id is None else obj_id % 10 # Use modulo 10 for tab10 colors
color = np.array([*cmap(cmap_idx)[:3], 0.6]) # RGBA with 0.6 alpha
# Ensure mask has H, W dimensions
if mask.ndim == 3:
mask = mask.squeeze() # Remove singular dimensions like (H, W, 1)
if mask.ndim != 2:
print(f"Warning: show_mask received mask with shape {mask.shape}. Expected 2D.")
# Create an empty transparent image if mask shape is unexpected
h, w = mask.shape[:2] if mask.ndim >= 2 else (100, 100) # Use actual shape if possible, otherwise default
if convert_to_image:
return Image.fromarray(np.zeros((h, w, 4), dtype=np.uint8), "RGBA")
else:
return np.zeros((h, w, 4), dtype=np.uint8)
h, w = mask.shape
# Create an RGBA image from the mask and color
# Apply color where mask is True
# Need to reshape color to be broadcastable [1, 1, 4]
colored_mask = np.zeros((h, w, 4), dtype=np.float32) # Start with fully transparent black
# Apply the color only where the mask is True.
# This directly creates the colored overlay with transparency.
colored_mask[mask] = color
# Convert to uint8 [0-255]
colored_mask_uint8 = (colored_mask * 255).astype(np.uint8)
if convert_to_image:
mask_img = Image.fromarray(colored_mask_uint8, "RGBA")
return mask_img
else:
return colored_mask_uint8
# Removed @spaces.GPU decorator
def propagate_to_all(
video_in, # Keep video_in path as in original
session_state,
):
"""Runs mask propagation through the video and generates the output video."""
print("Starting propagation...")
# Ensure state is ready
# Using session_state.get("video_path") is safer than video_in directly
current_video_path = session_state.get("video_path")
if (
len(session_state["input_points"]) == 0 # Need at least one point
or session_state["all_frames"] is None
or session_state["inference_state"] is None
or current_video_path is None # Ensure we have the original video path
):
print("Error: Cannot propagate. No points selected, video not loaded, or inference state missing.")
return (
gr.update(value=None, visible=False), # Hide output video on error
session_state,
)
# run propagation throughout the video and collect the results
video_segments = {}
try:
# This loop performs the core tracking prediction frame by frame
for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(
session_state["inference_state"]
):
# Process logits: detach from graph, move to CPU, convert to numpy boolean mask
# Ensure tensor is on CPU before converting to numpy
video_segments[out_frame_idx] = {
# out_mask_logits is a list of tensors (one per object tracked in this frame)
# Each tensor is [batch_size, H, W]. Batch size is 1 here.
# Access the result for the first object (index i) and the first item in batch (index 0)
out_obj_id: (out_mask_logits[i][0].detach().cpu() > 0.0).numpy()
for i, out_obj_id in enumerate(out_obj_ids)
}
# Optional: print progress
# print(f"Processed frame {out_frame_idx+1}/{len(session_state['all_frames'])}")
print("Propagation finished.")
except Exception as e:
print(f"Error during propagation: {e}")
return (
gr.update(value=None, visible=False), # Hide output video on error
session_state,
)
output_frames = []
# Iterate through all original frames to generate output video
total_frames = len(session_state["all_frames"])
for out_frame_idx in range(total_frames):
original_frame_rgb = session_state["all_frames"][out_frame_idx]
# Convert original frame to RGBA for compositing
transparent_background = Image.fromarray(original_frame_rgb).convert("RGBA")
# Check if we have a mask for this frame and object ID
if out_frame_idx in video_segments and OBJ_ID in video_segments[out_frame_idx]:
current_mask_numpy = video_segments[out_frame_idx][OBJ_ID]
# Get the mask image (RGBA)
mask_image_pil = show_mask(current_mask_numpy, obj_id=OBJ_ID)
# Composite the mask onto the frame
output_frame_img_rgba = Image.alpha_composite(transparent_background, mask_image_pil)
# Convert back to numpy RGB (moviepy needs RGB or RGBA)
output_frame_np = np.array(output_frame_img_rgba.convert("RGB"))
else:
# If no mask for this frame/object, just use the original frame (converted to RGB)
# Note: all_frames are already RGB numpy arrays, so just use them directly.
# print(f"Warning: No mask found for frame {out_frame_idx} and object {OBJ_ID}. Using original frame.")
output_frame_np = original_frame_rgb # Already RGB numpy array
output_frames.append(output_frame_np)
# Removed CUDA cache clearing call
# if torch.cuda.is_available():
# torch.cuda.empty_cache()
# Define output path in a temporary directory
unique_id = datetime.now().strftime("%Y%m%d%H%M%S%f") # Use microseconds for more uniqueness
final_vid_filename = f"output_video_{unique_id}.mp4"
final_vid_output_path = os.path.join(tempfile.gettempdir(), final_vid_filename)
print(f"Output video path: {final_vid_output_path}")
# Create a video clip from the image sequence
# Get original FPS from the stored video path
original_fps = get_video_fps(current_video_path)
fps = original_fps if original_fps is not None and original_fps > 0 else 30 # Default to 30 if detection fails or is zero
print(f"Creating output video with FPS: {fps}")
# Check if there are frames to process
if not output_frames:
print("No output frames generated.")
return (
gr.update(value=None, visible=False), # Hide output video
session_state,
)
# Create ImageSequenceClip from the list of numpy arrays
try:
clip = ImageSequenceClip(output_frames, fps=fps)
except Exception as e:
print(f"Error creating ImageSequenceClip: {e}")
return (
gr.update(value=None, visible=False), # Hide output video on error
session_state,
)
# Write the result to a file. Use 'libx264' codec for broad compatibility.
# Added CPU optimization parameters for moviepy write
try:
print(f"Writing video file with codec='libx264', fps={fps}, preset='medium', threads='auto'")
clip.write_videofile(
final_vid_output_path,
codec="libx264",
fps=fps, # Ensure correct FPS is used during writing
preset="medium", # CPU optimization: 'fast', 'faster', 'veryfast' are options for speed vs size
threads="auto", # CPU optimization: Use multiple cores
logger=None # Suppress moviepy output
)
print("Video writing complete.")
# Return the path and make the video player visible
return (
gr.update(value=final_vid_output_path, visible=True),
session_state,
)
except Exception as e:
print(f"Error writing video file: {e}")
# Clean up potentially created partial file
if os.path.exists(final_vid_output_path):
try:
os.remove(final_vid_output_path)
print(f"Removed partial video file: {final_vid_output_path}")
except Exception as clean_e:
print(f"Error removing partial file: {clean_e}")
# Return None if writing fails
return (
gr.update(value=None, visible=False),
session_state,
)
def update_output_video_visibility():
"""Simply returns a Gradio update to make the output video visible."""
return gr.update(visible=True)
with gr.Blocks() as demo:
# Session state dictionary to hold video frames, points, labels, and predictor state
session_state = gr.State(
{
"first_frame": None, # numpy array (RGB)
"all_frames": None, # list of numpy arrays (RGB)
"input_points": [], # list of (x, y) tuples/lists
"input_labels": [], # list of 1s and 0s
"inference_state": None, # EdgeTAM predictor state object
"video_path": None, # Store the input video path
}
)
with gr.Column():
# Title
gr.Markdown(title)
with gr.Row():
with gr.Column():
# Instructions
gr.Markdown(description_p)
with gr.Accordion("Input Video", open=True) as video_in_drawer:
video_in = gr.Video(label="Input Video", format="mp4") # Will hold the video file path
with gr.Row():
point_type = gr.Radio(
label="point type",
choices=["include", "exclude"],
value="include",
scale=2,
interactive=True, # Make interactive
)
# Buttons are initially disabled until a video is loaded
propagate_btn = gr.Button("Track", scale=1, variant="primary", interactive=False)
clear_points_btn = gr.Button("Clear Points", scale=1, interactive=False)
reset_btn = gr.Button("Reset", scale=1, interactive=False)
# points_map is where users click to add points. Needs to be interactive.
# Shows the first frame with points drawn on it.
points_map = gr.Image(
label="Click on the First Frame to Add Points", # Clearer label
type="numpy",
interactive=True, # <--- CHANGED TO True to enable clicking
height=400, # Set a fixed height for better UI
width="auto", # Let width adjust
show_share_button=False,
show_download_button=False,
)
with gr.Column():
gr.Markdown("# Try some of the examples below ⬇️")
gr.Examples(
examples=examples,
inputs=[video_in],
examples_per_page=8,
cache_examples=False, # Do not cache processed examples, as state is involved
)
# Removed extra blank lines
# output_image shows the segmentation mask prediction on the *first* frame
output_image = gr.Image(
label="Segmentation Mask on First Frame", # Clearer label
type="numpy",
interactive=False, # Not interactive, just displays the mask
height=400, # Match height of points_map
width="auto", # Let width adjust
show_share_button=False,
show_download_button=False,
)
# output_video shows the final tracking result
output_video = gr.Video(visible=False, label="Tracking Result")
# --- Event Handlers ---
# When a new video file is uploaded via the file browser
# Added postprocess to update button interactivity based on whether video loaded
video_in.upload(
fn=preprocess_video_in,
inputs=[video_in, session_state],
outputs=[
video_in_drawer, points_map, output_image, output_video,
propagate_btn, clear_points_btn, reset_btn, session_state,
],
queue=False, # Process immediately
)
# When an example video is selected (change event)
# Added postprocess to update button interactivity
video_in.change(
fn=preprocess_video_in,
inputs=[video_in, session_state],
outputs=[
video_in_drawer, points_map, output_image, output_video,
propagate_btn, clear_points_btn, reset_btn, session_state,
],
queue=False, # Process immediately
)
# Triggered when a user clicks on the points_map image
points_map.select(
fn=segment_with_points,
inputs=[
point_type, # "include" or "exclude" radio button value
session_state, # Pass session state
],
outputs=[
points_map, # Updated image with points drawn
output_image, # Updated image with first frame segmentation mask
session_state, # Updated session state (points/labels added)
],
queue=False, # Process clicks immediately
)
# Button to clear all selected points and reset the first frame mask
clear_points_btn.click(
fn=clear_points,
inputs=[session_state], # Pass session state
outputs=[
points_map, # points_map shows original first frame without points
output_image, # output_image cleared (or shows original first frame without mask)
output_video, # Hide output video
session_state, # Updated session state (points/labels cleared, inference state reset)
],
queue=False, # Process immediately
)
# Button to reset the entire demo state and UI
reset_btn.click(
fn=reset,
inputs=[session_state], # Pass session state
outputs=[
video_in, video_in_drawer, points_map, output_image, output_video,
propagate_btn, clear_points_btn, reset_btn, session_state,
],
queue=False, # Process immediately
)
# Button to start mask propagation through the video
propagate_btn.click(
fn=update_output_video_visibility, # First, make the output video player visible
inputs=[],
outputs=[output_video],
queue=False, # Process this UI update immediately
).then( # Then, run the propagation function
fn=propagate_to_all,
inputs=[
video_in, # Get the input video path (can also get from session_state["video_path"])
session_state, # Pass session state (contains frames, points, inference_state, video_path)
],
outputs=[
output_video, # Update output video player with result
session_state, # Update session state
],
# CPU Optimization: Limit concurrency to 1 to prevent resource exhaustion.
# Queue=True ensures requests wait if another is processing.
concurrency_limit=1,
queue=True,
)
# Launch the Gradio demo
demo.queue() # Enable queuing for sequential processing under concurrency limits
print("Gradio demo starting...")
# Removed share=True for local debugging unless you specifically need a public link
demo.launch()
print("Gradio demo launched.") |