Update app.py
Browse files
app.py
CHANGED
|
@@ -1,615 +1,178 @@
|
|
| 1 |
-
#
|
| 2 |
-
# All rights reserved.
|
| 3 |
|
| 4 |
-
# This source code is licensed under the license found in the
|
| 5 |
-
# LICENSE file in the root directory of this source tree.
|
| 6 |
-
|
| 7 |
-
import copy
|
| 8 |
import os
|
| 9 |
-
|
| 10 |
import tempfile
|
|
|
|
|
|
|
| 11 |
|
| 12 |
import cv2
|
| 13 |
-
import matplotlib.pyplot as plt
|
| 14 |
import numpy as np
|
| 15 |
-
|
|
|
|
| 16 |
import torch
|
| 17 |
-
|
| 18 |
from moviepy.editor import ImageSequenceClip
|
| 19 |
-
from PIL import Image
|
| 20 |
-
from sam2.build_sam import build_sam2_video_predictor
|
| 21 |
-
|
| 22 |
-
# Remove CUDA environment variables
|
| 23 |
-
if 'TORCH_CUDNN_SDPA_ENABLED' in os.environ:
|
| 24 |
-
del os.environ["TORCH_CUDNN_SDPA_ENABLED"]
|
| 25 |
-
|
| 26 |
-
# Description
|
| 27 |
-
title = "<center><strong><font size='8'>EdgeTAM CPU<font></strong> <a href='https://github.com/facebookresearch/EdgeTAM'><font size='6'>[GitHub]</font></a> </center>"
|
| 28 |
|
| 29 |
-
|
| 30 |
-
<ol>
|
| 31 |
-
<li> Upload one video or click one example video</li>
|
| 32 |
-
<li> Click 'include' point type, select the object to segment and track</li>
|
| 33 |
-
<li> Click 'exclude' point type (optional), select the area you want to avoid segmenting and tracking</li>
|
| 34 |
-
<li> Click the 'Track' button to obtain the masked video </li>
|
| 35 |
-
</ol>
|
| 36 |
-
"""
|
| 37 |
-
|
| 38 |
-
# examples - keeping fewer examples to reduce memory footprint
|
| 39 |
-
examples = [
|
| 40 |
-
["examples/01_dog.mp4"],
|
| 41 |
-
["examples/02_cups.mp4"],
|
| 42 |
-
["examples/03_blocks.mp4"],
|
| 43 |
-
["examples/04_coffee.mp4"],
|
| 44 |
-
["examples/05_default_juggle.mp4"],
|
| 45 |
-
]
|
| 46 |
|
| 47 |
-
|
|
|
|
| 48 |
|
| 49 |
-
#
|
| 50 |
sam2_checkpoint = "checkpoints/edgetam.pt"
|
| 51 |
model_cfg = "edgetam.yaml"
|
|
|
|
|
|
|
| 52 |
|
| 53 |
-
#
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
print(
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
model_files_exist = check_file_exists(sam2_checkpoint) and check_file_exists(model_cfg)
|
| 63 |
-
try:
|
| 64 |
-
# Load model with more careful error handling
|
| 65 |
-
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device="cpu")
|
| 66 |
-
print("predictor loaded on CPU")
|
| 67 |
-
except Exception as e:
|
| 68 |
-
print(f"Error loading model: {e}")
|
| 69 |
-
import traceback
|
| 70 |
-
traceback.print_exc()
|
| 71 |
-
# Still create a predictor variable to avoid NameError
|
| 72 |
predictor = None
|
| 73 |
|
| 74 |
-
|
| 75 |
-
def get_video_fps(video_path):
|
| 76 |
cap = cv2.VideoCapture(video_path)
|
| 77 |
-
if not cap.isOpened():
|
| 78 |
-
print("Error: Could not open video.")
|
| 79 |
-
return 30.0 # Default fallback value
|
| 80 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 81 |
cap.release()
|
| 82 |
return fps
|
| 83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
-
def
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
if
|
| 89 |
-
predictor.reset_state(
|
| 90 |
-
|
| 91 |
-
session_state["all_frames"] = None
|
| 92 |
-
session_state["inference_state"] = None
|
| 93 |
-
return (
|
| 94 |
-
None,
|
| 95 |
-
gr.update(open=True),
|
| 96 |
-
None,
|
| 97 |
-
None,
|
| 98 |
-
gr.update(value=None, visible=False),
|
| 99 |
-
session_state,
|
| 100 |
-
)
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
def clear_points(session_state):
|
| 104 |
-
session_state["input_points"] = []
|
| 105 |
-
session_state["input_labels"] = []
|
| 106 |
-
if session_state["inference_state"] is not None and session_state["inference_state"].get("tracking_has_started", False):
|
| 107 |
-
predictor.reset_state(session_state["inference_state"])
|
| 108 |
-
return (
|
| 109 |
-
session_state["first_frame"],
|
| 110 |
-
None,
|
| 111 |
-
gr.update(value=None, visible=False),
|
| 112 |
-
session_state,
|
| 113 |
-
)
|
| 114 |
-
|
| 115 |
|
| 116 |
-
def
|
| 117 |
-
if video_path is None:
|
| 118 |
-
return (
|
| 119 |
-
gr.update(open=True), # video_in_drawer
|
| 120 |
-
None, # points_map
|
| 121 |
-
None, # output_image
|
| 122 |
-
gr.update(value=None, visible=False), # output_video
|
| 123 |
-
session_state,
|
| 124 |
-
)
|
| 125 |
-
|
| 126 |
-
# Read the first frame
|
| 127 |
cap = cv2.VideoCapture(video_path)
|
| 128 |
-
if not cap.isOpened():
|
| 129 |
-
print("Error: Could not open video.")
|
| 130 |
-
return (
|
| 131 |
-
gr.update(open=True), # video_in_drawer
|
| 132 |
-
None, # points_map
|
| 133 |
-
None, # output_image
|
| 134 |
-
gr.update(value=None, visible=False), # output_video
|
| 135 |
-
session_state,
|
| 136 |
-
)
|
| 137 |
-
|
| 138 |
-
# For CPU optimization - determine video properties
|
| 139 |
-
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 140 |
-
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 141 |
-
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 142 |
-
|
| 143 |
-
# Determine if we need to resize for CPU performance
|
| 144 |
-
target_width = 640 # Target width for processing on CPU
|
| 145 |
-
scale_factor = 1.0
|
| 146 |
-
|
| 147 |
-
if frame_width > target_width:
|
| 148 |
-
scale_factor = target_width / frame_width
|
| 149 |
-
frame_width = target_width
|
| 150 |
-
frame_height = int(frame_height * scale_factor)
|
| 151 |
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
first_frame = None
|
| 155 |
-
all_frames = []
|
| 156 |
-
|
| 157 |
-
# For CPU optimization, skip frames if video is too long
|
| 158 |
-
frame_stride = 1
|
| 159 |
-
if total_frames > 300: # If more than 300 frames
|
| 160 |
-
frame_stride = max(1, int(total_frames / 300)) # Process at most ~300 frames
|
| 161 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
while True:
|
| 163 |
ret, frame = cap.read()
|
| 164 |
-
if not ret:
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
# Resize the frame if needed
|
| 169 |
-
if scale_factor != 1.0:
|
| 170 |
-
frame = cv2.resize(frame, (frame_width, frame_height), interpolation=cv2.INTER_AREA)
|
| 171 |
-
|
| 172 |
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
if first_frame is None:
|
| 177 |
-
first_frame = frame
|
| 178 |
-
all_frames.append(frame)
|
| 179 |
-
|
| 180 |
-
frame_number += 1
|
| 181 |
-
|
| 182 |
cap.release()
|
| 183 |
-
session_state["first_frame"] = copy.deepcopy(first_frame)
|
| 184 |
-
session_state["all_frames"] = all_frames
|
| 185 |
-
session_state["frame_stride"] = frame_stride
|
| 186 |
-
session_state["scale_factor"] = scale_factor
|
| 187 |
-
session_state["original_dimensions"] = (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)),
|
| 188 |
-
int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)))
|
| 189 |
-
|
| 190 |
-
session_state["inference_state"] = predictor.init_state(video_path=video_path)
|
| 191 |
-
session_state["input_points"] = []
|
| 192 |
-
session_state["input_labels"] = []
|
| 193 |
-
|
| 194 |
-
return [
|
| 195 |
-
gr.update(open=False), # video_in_drawer
|
| 196 |
-
first_frame, # points_map
|
| 197 |
-
None, # output_image
|
| 198 |
-
gr.update(value=None, visible=False), # output_video
|
| 199 |
-
session_state,
|
| 200 |
-
]
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
def segment_with_points(
|
| 204 |
-
point_type,
|
| 205 |
-
session_state,
|
| 206 |
-
evt: gr.SelectData,
|
| 207 |
-
):
|
| 208 |
-
session_state["input_points"].append(evt.index)
|
| 209 |
-
print(f"TRACKING INPUT POINT: {session_state['input_points']}")
|
| 210 |
-
|
| 211 |
-
if point_type == "include":
|
| 212 |
-
session_state["input_labels"].append(1)
|
| 213 |
-
elif point_type == "exclude":
|
| 214 |
-
session_state["input_labels"].append(0)
|
| 215 |
-
print(f"TRACKING INPUT LABEL: {session_state['input_labels']}")
|
| 216 |
|
| 217 |
-
|
| 218 |
-
first_frame =
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
# Convert the transparent layer back to an image
|
| 236 |
-
transparent_layer = Image.fromarray(transparent_layer, "RGBA")
|
| 237 |
-
selected_point_map = Image.alpha_composite(
|
| 238 |
-
transparent_background, transparent_layer
|
| 239 |
-
)
|
| 240 |
-
|
| 241 |
-
# Let's add a positive click at (x, y) = (210, 350) to get started
|
| 242 |
-
points = np.array(session_state["input_points"], dtype=np.float32)
|
| 243 |
-
# for labels, `1` means positive click and `0` means negative click
|
| 244 |
-
labels = np.array(session_state["input_labels"], np.int32)
|
| 245 |
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
frame_idx=0,
|
| 251 |
-
obj_id=OBJ_ID,
|
| 252 |
-
points=points,
|
| 253 |
-
labels=labels,
|
| 254 |
-
)
|
| 255 |
-
|
| 256 |
-
# Create the mask
|
| 257 |
-
mask_array = (out_mask_logits[0] > 0.0).cpu().numpy()
|
| 258 |
-
|
| 259 |
-
# Ensure the mask has the same size as the frame
|
| 260 |
-
if mask_array.shape[:2] != (h, w):
|
| 261 |
-
mask_array = cv2.resize(
|
| 262 |
-
mask_array.astype(np.uint8),
|
| 263 |
-
(w, h),
|
| 264 |
-
interpolation=cv2.INTER_NEAREST
|
| 265 |
-
).astype(bool)
|
| 266 |
-
|
| 267 |
-
mask_image = show_mask(mask_array)
|
| 268 |
-
|
| 269 |
-
# Make sure mask_image has the same size as the background
|
| 270 |
-
if mask_image.size != transparent_background.size:
|
| 271 |
-
mask_image = mask_image.resize(transparent_background.size, Image.NEAREST)
|
| 272 |
-
|
| 273 |
-
first_frame_output = Image.alpha_composite(transparent_background, mask_image)
|
| 274 |
-
except Exception as e:
|
| 275 |
-
print(f"Error in segmentation: {e}")
|
| 276 |
-
# Return just the points as fallback
|
| 277 |
-
first_frame_output = selected_point_map
|
| 278 |
-
|
| 279 |
-
return selected_point_map, first_frame_output, session_state
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
def show_mask(mask, obj_id=None, random_color=False, convert_to_image=True):
|
| 283 |
-
if random_color:
|
| 284 |
-
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
|
| 285 |
-
else:
|
| 286 |
-
cmap = plt.get_cmap("tab10")
|
| 287 |
-
cmap_idx = 0 if obj_id is None else obj_id
|
| 288 |
-
color = np.array([*cmap(cmap_idx)[:3], 0.6])
|
| 289 |
|
| 290 |
-
|
| 291 |
-
if len(mask.shape) == 2:
|
| 292 |
-
h, w = mask.shape
|
| 293 |
-
else:
|
| 294 |
-
h, w = mask.shape[-2:]
|
| 295 |
-
|
| 296 |
-
# Ensure correct reshaping based on mask dimensions
|
| 297 |
-
mask_reshaped = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
|
| 298 |
-
mask_rgba = (mask_reshaped * 255).astype(np.uint8)
|
| 299 |
-
|
| 300 |
-
if convert_to_image:
|
| 301 |
-
try:
|
| 302 |
-
# Ensure the mask has correct RGBA shape (h, w, 4)
|
| 303 |
-
if mask_rgba.shape[2] != 4:
|
| 304 |
-
# If not RGBA, create a proper RGBA array
|
| 305 |
-
proper_mask = np.zeros((h, w, 4), dtype=np.uint8)
|
| 306 |
-
# Copy available channels
|
| 307 |
-
proper_mask[:, :, :min(mask_rgba.shape[2], 4)] = mask_rgba[:, :, :min(mask_rgba.shape[2], 4)]
|
| 308 |
-
mask_rgba = proper_mask
|
| 309 |
-
|
| 310 |
-
# Create the PIL image
|
| 311 |
-
return Image.fromarray(mask_rgba, "RGBA")
|
| 312 |
-
except Exception as e:
|
| 313 |
-
print(f"Error converting mask to image: {e}")
|
| 314 |
-
# Fallback: create a blank transparent image of correct size
|
| 315 |
-
blank = np.zeros((h, w, 4), dtype=np.uint8)
|
| 316 |
-
return Image.fromarray(blank, "RGBA")
|
| 317 |
-
|
| 318 |
-
return mask_rgba
|
| 319 |
-
|
| 320 |
|
| 321 |
-
def propagate_to_all(
|
| 322 |
-
video_in,
|
| 323 |
-
session_state,
|
| 324 |
-
):
|
| 325 |
-
if (
|
| 326 |
-
len(session_state["input_points"]) == 0
|
| 327 |
-
or video_in is None
|
| 328 |
-
or session_state["inference_state"] is None
|
| 329 |
-
):
|
| 330 |
-
return (
|
| 331 |
-
None,
|
| 332 |
-
session_state,
|
| 333 |
-
)
|
| 334 |
-
|
| 335 |
-
# For CPU optimization: process in smaller batches
|
| 336 |
-
chunk_size = 3 # Process 3 frames at a time to avoid memory issues on CPU
|
| 337 |
-
|
| 338 |
try:
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(
|
| 345 |
-
session_state["inference_state"]
|
| 346 |
-
):
|
| 347 |
-
try:
|
| 348 |
-
# Store the masks for each object ID
|
| 349 |
-
video_segments[out_frame_idx] = {
|
| 350 |
-
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
|
| 351 |
-
for i, out_obj_id in enumerate(out_obj_ids)
|
| 352 |
-
}
|
| 353 |
-
|
| 354 |
-
print(f"Processed frame {out_frame_idx}")
|
| 355 |
-
|
| 356 |
-
# Release memory periodically
|
| 357 |
-
if out_frame_idx % chunk_size == 0:
|
| 358 |
-
# Explicitly clear any tensors
|
| 359 |
-
del out_mask_logits
|
| 360 |
-
import gc
|
| 361 |
-
gc.collect()
|
| 362 |
-
except Exception as e:
|
| 363 |
-
print(f"Error processing frame {out_frame_idx}: {e}")
|
| 364 |
-
continue
|
| 365 |
-
|
| 366 |
-
# For CPU optimization: increase stride to reduce processing
|
| 367 |
-
# Create a more aggressive stride to limit to fewer frames in output
|
| 368 |
-
total_frames = len(video_segments)
|
| 369 |
-
print(f"Total frames processed: {total_frames}")
|
| 370 |
-
|
| 371 |
-
# Limit to max 50 frames for CPU processing
|
| 372 |
-
max_output_frames = 50
|
| 373 |
-
vis_frame_stride = max(1, total_frames // max_output_frames)
|
| 374 |
-
|
| 375 |
-
# Get dimensions of the frames
|
| 376 |
-
first_frame = session_state["all_frames"][0]
|
| 377 |
-
h, w = first_frame.shape[:2]
|
| 378 |
-
|
| 379 |
-
output_frames = []
|
| 380 |
-
for out_frame_idx in range(0, total_frames, vis_frame_stride):
|
| 381 |
-
if out_frame_idx not in video_segments or OBJ_ID not in video_segments[out_frame_idx]:
|
| 382 |
-
continue
|
| 383 |
-
|
| 384 |
-
try:
|
| 385 |
-
frame = session_state["all_frames"][out_frame_idx]
|
| 386 |
-
transparent_background = Image.fromarray(frame).convert("RGBA")
|
| 387 |
-
|
| 388 |
-
# Get the mask and ensure it's the right size
|
| 389 |
-
out_mask = video_segments[out_frame_idx][OBJ_ID]
|
| 390 |
-
|
| 391 |
-
# Resize mask if dimensions don't match
|
| 392 |
-
if out_mask.shape[:2] != (h, w):
|
| 393 |
-
out_mask = cv2.resize(
|
| 394 |
-
out_mask.astype(np.uint8),
|
| 395 |
-
(w, h),
|
| 396 |
-
interpolation=cv2.INTER_NEAREST
|
| 397 |
-
).astype(bool)
|
| 398 |
-
|
| 399 |
-
mask_image = show_mask(out_mask)
|
| 400 |
-
|
| 401 |
-
# Make sure mask has same dimensions as background
|
| 402 |
-
if mask_image.size != transparent_background.size:
|
| 403 |
-
mask_image = mask_image.resize(transparent_background.size, Image.NEAREST)
|
| 404 |
-
|
| 405 |
-
output_frame = Image.alpha_composite(transparent_background, mask_image)
|
| 406 |
-
output_frame = np.array(output_frame)
|
| 407 |
-
output_frames.append(output_frame)
|
| 408 |
-
|
| 409 |
-
# Clear memory periodically
|
| 410 |
-
if len(output_frames) % 10 == 0:
|
| 411 |
-
import gc
|
| 412 |
-
gc.collect()
|
| 413 |
-
|
| 414 |
-
except Exception as e:
|
| 415 |
-
print(f"Error creating output frame {out_frame_idx}: {e}")
|
| 416 |
-
continue
|
| 417 |
-
|
| 418 |
-
# Create a video clip from the image sequence
|
| 419 |
-
original_fps = get_video_fps(video_in)
|
| 420 |
-
fps = original_fps
|
| 421 |
-
|
| 422 |
-
# For CPU optimization - lower FPS if original is high
|
| 423 |
-
if fps > 15:
|
| 424 |
-
fps = 15 # Lower fps for CPU processing
|
| 425 |
-
|
| 426 |
-
print(f"Creating video with {len(output_frames)} frames at {fps} FPS")
|
| 427 |
-
clip = ImageSequenceClip(output_frames, fps=fps)
|
| 428 |
-
|
| 429 |
-
# Write the result to a file - use lower quality for CPU
|
| 430 |
-
unique_id = datetime.now().strftime("%Y%m%d%H%M%S")
|
| 431 |
-
final_vid_output_path = f"output_video_{unique_id}.mp4"
|
| 432 |
-
final_vid_output_path = os.path.join(tempfile.gettempdir(), final_vid_output_path)
|
| 433 |
-
|
| 434 |
-
# Lower bitrate for CPU processing
|
| 435 |
-
clip.write_videofile(
|
| 436 |
-
final_vid_output_path,
|
| 437 |
-
codec="libx264",
|
| 438 |
-
bitrate="800k",
|
| 439 |
-
threads=2, # Use fewer threads for CPU
|
| 440 |
-
logger=None # Disable logger to reduce console output
|
| 441 |
-
)
|
| 442 |
-
|
| 443 |
-
# Free memory
|
| 444 |
-
del video_segments
|
| 445 |
-
del output_frames
|
| 446 |
-
import gc
|
| 447 |
-
gc.collect()
|
| 448 |
-
|
| 449 |
-
return (
|
| 450 |
-
gr.update(value=final_vid_output_path, visible=True),
|
| 451 |
-
session_state,
|
| 452 |
-
)
|
| 453 |
-
|
| 454 |
except Exception as e:
|
| 455 |
-
print(
|
| 456 |
-
return
|
| 457 |
-
gr.update(value=None, visible=False),
|
| 458 |
-
session_state,
|
| 459 |
-
)
|
| 460 |
|
|
|
|
|
|
|
| 461 |
|
| 462 |
-
|
| 463 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 464 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 465 |
|
| 466 |
with gr.Blocks() as demo:
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
"
|
| 474 |
-
"
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
gr.
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
|
| 498 |
-
)
|
| 499 |
-
propagate_btn = gr.Button("Track", scale=1, variant="primary")
|
| 500 |
-
clear_points_btn = gr.Button("Clear Points", scale=1)
|
| 501 |
-
reset_btn = gr.Button("Reset", scale=1)
|
| 502 |
-
|
| 503 |
-
points_map = gr.Image(
|
| 504 |
-
label="Frame with Point Prompt", type="numpy", interactive=False
|
| 505 |
-
)
|
| 506 |
-
|
| 507 |
-
with gr.Column():
|
| 508 |
-
gr.Markdown("# Try some of the examples below ⬇️")
|
| 509 |
-
gr.Examples(
|
| 510 |
-
examples=examples,
|
| 511 |
-
inputs=[
|
| 512 |
-
video_in,
|
| 513 |
-
],
|
| 514 |
-
examples_per_page=5,
|
| 515 |
-
)
|
| 516 |
-
|
| 517 |
-
output_image = gr.Image(label="Reference Mask")
|
| 518 |
-
output_video = gr.Video(visible=False)
|
| 519 |
-
|
| 520 |
-
# When new video is uploaded
|
| 521 |
-
video_in.upload(
|
| 522 |
-
fn=preprocess_video_in,
|
| 523 |
-
inputs=[
|
| 524 |
-
video_in,
|
| 525 |
-
session_state,
|
| 526 |
-
],
|
| 527 |
-
outputs=[
|
| 528 |
-
video_in_drawer, # Accordion to hide uploaded video player
|
| 529 |
-
points_map, # Image component where we add new tracking points
|
| 530 |
-
output_image,
|
| 531 |
-
output_video,
|
| 532 |
-
session_state,
|
| 533 |
-
],
|
| 534 |
-
queue=False,
|
| 535 |
-
)
|
| 536 |
-
|
| 537 |
-
video_in.change(
|
| 538 |
-
fn=preprocess_video_in,
|
| 539 |
-
inputs=[
|
| 540 |
-
video_in,
|
| 541 |
-
session_state,
|
| 542 |
-
],
|
| 543 |
-
outputs=[
|
| 544 |
-
video_in_drawer, # Accordion to hide uploaded video player
|
| 545 |
-
points_map, # Image component where we add new tracking points
|
| 546 |
-
output_image,
|
| 547 |
-
output_video,
|
| 548 |
-
session_state,
|
| 549 |
-
],
|
| 550 |
-
queue=False,
|
| 551 |
-
)
|
| 552 |
-
|
| 553 |
-
# triggered when we click on image to add new points
|
| 554 |
-
points_map.select(
|
| 555 |
-
fn=segment_with_points,
|
| 556 |
-
inputs=[
|
| 557 |
-
point_type, # "include" or "exclude"
|
| 558 |
-
session_state,
|
| 559 |
-
],
|
| 560 |
-
outputs=[
|
| 561 |
-
points_map, # updated image with points
|
| 562 |
-
output_image,
|
| 563 |
-
session_state,
|
| 564 |
-
],
|
| 565 |
-
queue=False,
|
| 566 |
-
)
|
| 567 |
-
|
| 568 |
-
# Clear every points clicked and added to the map
|
| 569 |
-
clear_points_btn.click(
|
| 570 |
-
fn=clear_points,
|
| 571 |
-
inputs=session_state,
|
| 572 |
-
outputs=[
|
| 573 |
-
points_map,
|
| 574 |
-
output_image,
|
| 575 |
-
output_video,
|
| 576 |
-
session_state,
|
| 577 |
-
],
|
| 578 |
-
queue=False,
|
| 579 |
-
)
|
| 580 |
-
|
| 581 |
-
reset_btn.click(
|
| 582 |
-
fn=reset,
|
| 583 |
-
inputs=session_state,
|
| 584 |
-
outputs=[
|
| 585 |
-
video_in,
|
| 586 |
-
video_in_drawer,
|
| 587 |
-
points_map,
|
| 588 |
-
output_image,
|
| 589 |
-
output_video,
|
| 590 |
-
session_state,
|
| 591 |
-
],
|
| 592 |
-
queue=False,
|
| 593 |
-
)
|
| 594 |
-
|
| 595 |
-
propagate_btn.click(
|
| 596 |
-
fn=update_ui,
|
| 597 |
-
inputs=[],
|
| 598 |
-
outputs=output_video,
|
| 599 |
-
queue=False,
|
| 600 |
-
).then(
|
| 601 |
-
fn=propagate_to_all,
|
| 602 |
-
inputs=[
|
| 603 |
-
video_in,
|
| 604 |
-
session_state,
|
| 605 |
-
],
|
| 606 |
-
outputs=[
|
| 607 |
-
output_video,
|
| 608 |
-
session_state,
|
| 609 |
-
],
|
| 610 |
-
queue=True, # Use queue for CPU processing
|
| 611 |
-
)
|
| 612 |
-
|
| 613 |
-
|
| 614 |
-
demo.queue()
|
| 615 |
-
demo.launch()
|
|
|
|
| 1 |
+
# The full rewritten version of the provided code with progress bar, error fixes, and proper Gradio integration
|
|
|
|
| 2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
import os
|
| 4 |
+
import copy
|
| 5 |
import tempfile
|
| 6 |
+
from datetime import datetime
|
| 7 |
+
import gc
|
| 8 |
|
| 9 |
import cv2
|
|
|
|
| 10 |
import numpy as np
|
| 11 |
+
from PIL import Image
|
| 12 |
+
import matplotlib.pyplot as plt
|
| 13 |
import torch
|
| 14 |
+
import gradio as gr
|
| 15 |
from moviepy.editor import ImageSequenceClip
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
+
from sam2.build_sam import build_sam2_video_predictor
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
+
# Remove CUDA-related env var to force CPU-only mode
|
| 20 |
+
os.environ.pop("TORCH_CUDNN_SDPA_ENABLED", None)
|
| 21 |
|
| 22 |
+
# Config
|
| 23 |
sam2_checkpoint = "checkpoints/edgetam.pt"
|
| 24 |
model_cfg = "edgetam.yaml"
|
| 25 |
+
examples = [[f"examples/{vid}"] for vid in ["01_dog.mp4", "02_cups.mp4", "03_blocks.mp4", "04_coffee.mp4", "05_default_juggle.mp4"]]
|
| 26 |
+
OBJ_ID = 0
|
| 27 |
|
| 28 |
+
# Model loader
|
| 29 |
+
if os.path.exists(sam2_checkpoint) and os.path.exists(model_cfg):
|
| 30 |
+
try:
|
| 31 |
+
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device="cpu")
|
| 32 |
+
except Exception as e:
|
| 33 |
+
print("Error loading predictor:", e)
|
| 34 |
+
predictor = None
|
| 35 |
+
else:
|
| 36 |
+
print("Model files missing.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
predictor = None
|
| 38 |
|
| 39 |
+
def get_fps(video_path):
|
|
|
|
| 40 |
cap = cv2.VideoCapture(video_path)
|
| 41 |
+
if not cap.isOpened(): return 30.0
|
|
|
|
|
|
|
| 42 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 43 |
cap.release()
|
| 44 |
return fps
|
| 45 |
|
| 46 |
+
def reset(session):
|
| 47 |
+
if session["inference_state"]:
|
| 48 |
+
predictor.reset_state(session["inference_state"])
|
| 49 |
+
session.update({"input_points": [], "input_labels": [], "first_frame": None, "all_frames": None, "inference_state": None})
|
| 50 |
+
return None, gr.update(open=True), None, None, gr.update(value=None, visible=False), session
|
| 51 |
|
| 52 |
+
def clear_points(session):
|
| 53 |
+
session["input_points"] = []
|
| 54 |
+
session["input_labels"] = []
|
| 55 |
+
if session["inference_state"] and session["inference_state"].get("tracking_has_started"):
|
| 56 |
+
predictor.reset_state(session["inference_state"])
|
| 57 |
+
return session["first_frame"], None, gr.update(value=None, visible=False), session
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
+
def preprocess_video(video_path, session):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
cap = cv2.VideoCapture(video_path)
|
| 61 |
+
if not cap.isOpened(): return gr.update(open=True), None, None, gr.update(value=None, visible=False), session
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 64 |
+
stride = max(1, total_frames // 300)
|
| 65 |
+
frames, first_frame = [], None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
+
w, h = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 68 |
+
target_w = 640
|
| 69 |
+
scale = target_w / w if w > target_w else 1.0
|
| 70 |
+
|
| 71 |
+
frame_id = 0
|
| 72 |
while True:
|
| 73 |
ret, frame = cap.read()
|
| 74 |
+
if not ret: break
|
| 75 |
+
if frame_id % stride == 0:
|
| 76 |
+
if scale < 1.0:
|
| 77 |
+
frame = cv2.resize(frame, (int(w*scale), int(h*scale)))
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 79 |
+
if first_frame is None: first_frame = frame
|
| 80 |
+
frames.append(frame)
|
| 81 |
+
frame_id += 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
cap.release()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
+
session.update({"first_frame": first_frame, "all_frames": frames, "frame_stride": stride, "scale_factor": scale, "inference_state": predictor.init_state(video_path=video_path), "input_points": [], "input_labels": []})
|
| 85 |
+
return gr.update(open=False), first_frame, None, gr.update(value=None, visible=False), session
|
| 86 |
+
|
| 87 |
+
def show_mask(mask, obj_id=None):
|
| 88 |
+
cmap = plt.get_cmap("tab10")
|
| 89 |
+
color = np.array([*cmap(0 if obj_id is None else obj_id)[:3], 0.6])
|
| 90 |
+
h, w = mask.shape
|
| 91 |
+
mask_rgba = (mask.reshape(h, w, 1) * color.reshape(1, 1, -1) * 255).astype(np.uint8)
|
| 92 |
+
proper_mask = np.zeros((h, w, 4), dtype=np.uint8)
|
| 93 |
+
proper_mask[:, :, :min(mask_rgba.shape[2], 4)] = mask_rgba[:, :, :min(mask_rgba.shape[2], 4)]
|
| 94 |
+
return Image.fromarray(proper_mask, "RGBA")
|
| 95 |
+
|
| 96 |
+
def segment_with_points(ptype, session, evt):
|
| 97 |
+
session["input_points"].append(evt.index)
|
| 98 |
+
session["input_labels"].append(1 if ptype == "include" else 0)
|
| 99 |
+
first = session["first_frame"]
|
| 100 |
+
h, w = first.shape[:2]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
+
layer = np.zeros((h, w, 4), dtype=np.uint8)
|
| 103 |
+
for idx, pt in enumerate(session["input_points"]):
|
| 104 |
+
color = (0, 255, 0, 255) if session["input_labels"][idx] == 1 else (255, 0, 0, 255)
|
| 105 |
+
cv2.circle(layer, pt, int(min(w, h)*0.01), color, -1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
+
overlay = Image.alpha_composite(Image.fromarray(first).convert("RGBA"), Image.fromarray(layer, "RGBA"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
try:
|
| 110 |
+
_, _, logits = predictor.add_new_points(session["inference_state"], 0, OBJ_ID, np.array(session["input_points"]), np.array(session["input_labels"]))
|
| 111 |
+
mask = (logits[0] > 0.0).cpu().numpy()
|
| 112 |
+
mask = cv2.resize(mask.astype(np.uint8), (w, h), interpolation=cv2.INTER_NEAREST).astype(bool)
|
| 113 |
+
mask_img = show_mask(mask)
|
| 114 |
+
return overlay, Image.alpha_composite(Image.fromarray(first).convert("RGBA"), mask_img), session
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
except Exception as e:
|
| 116 |
+
print("Segmentation error:", e)
|
| 117 |
+
return overlay, overlay, session
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
+
def propagate(video_in, session, progress=gr.Progress()):
|
| 120 |
+
if not session["input_points"] or not session["inference_state"]: return None, session
|
| 121 |
|
| 122 |
+
masks = {}
|
| 123 |
+
for i, (idxs, obj_ids, logits) in enumerate(predictor.propagate_in_video(session["inference_state"])):
|
| 124 |
+
try:
|
| 125 |
+
masks[idxs] = {oid: (logits[j] > 0.0).cpu().numpy() for j, oid in enumerate(obj_ids)}
|
| 126 |
+
progress(i / 300, desc=f"Tracking frame {idxs}")
|
| 127 |
+
except: continue
|
| 128 |
|
| 129 |
+
frames_out, stride = [], max(1, len(masks) // 50)
|
| 130 |
+
for i in range(0, len(masks), stride):
|
| 131 |
+
if i not in masks or OBJ_ID not in masks[i]: continue
|
| 132 |
+
try:
|
| 133 |
+
frame = session["all_frames"][i]
|
| 134 |
+
mask = masks[i][OBJ_ID]
|
| 135 |
+
h, w = frame.shape[:2]
|
| 136 |
+
mask = cv2.resize(mask.astype(np.uint8), (w, h), interpolation=cv2.INTER_NEAREST).astype(bool)
|
| 137 |
+
output = Image.alpha_composite(Image.fromarray(frame).convert("RGBA"), show_mask(mask))
|
| 138 |
+
frames_out.append(np.array(output))
|
| 139 |
+
except: continue
|
| 140 |
+
|
| 141 |
+
out_path = os.path.join(tempfile.gettempdir(), f"output_video_{datetime.now().strftime('%Y%m%d%H%M%S')}.mp4")
|
| 142 |
+
fps = min(15, get_fps(video_in))
|
| 143 |
+
ImageSequenceClip(frames_out, fps=fps).write_videofile(out_path, codec="libx264", bitrate="800k", threads=2, logger=None)
|
| 144 |
+
gc.collect()
|
| 145 |
+
return gr.update(value=out_path, visible=True), session
|
| 146 |
|
| 147 |
with gr.Blocks() as demo:
|
| 148 |
+
state = gr.State({"first_frame": None, "all_frames": None, "input_points": [], "input_labels": [], "inference_state": None, "frame_stride": 1, "scale_factor": 1.0, "original_dimensions": None})
|
| 149 |
+
|
| 150 |
+
gr.Markdown("<center><strong><font size='8'>EdgeTAM CPU</font></strong> <a href='https://github.com/facebookresearch/EdgeTAM'><font size='6'>[GitHub]</font></a></center>")
|
| 151 |
+
|
| 152 |
+
with gr.Row():
|
| 153 |
+
with gr.Column():
|
| 154 |
+
gr.Markdown("""<ol><li>Upload a video or use an example</li><li>Select 'include' or 'exclude' and click points</li><li>Click 'Track' to segment and track</li></ol>""")
|
| 155 |
+
drawer = gr.Accordion("Input Video", open=True)
|
| 156 |
+
with drawer:
|
| 157 |
+
video_in = gr.Video(label="Input Video", format="mp4")
|
| 158 |
+
ptype = gr.Radio(label="Point Type", choices=["include", "exclude"], value="include")
|
| 159 |
+
track_btn = gr.Button("Track", variant="primary")
|
| 160 |
+
clear_btn = gr.Button("Clear Points")
|
| 161 |
+
reset_btn = gr.Button("Reset")
|
| 162 |
+
points_map = gr.Image(label="Frame with Points", type="numpy", interactive=False)
|
| 163 |
+
with gr.Column():
|
| 164 |
+
gr.Markdown("# Try some examples ⬇️")
|
| 165 |
+
gr.Examples(examples, inputs=[video_in], examples_per_page=5)
|
| 166 |
+
output_img = gr.Image(label="Reference Mask")
|
| 167 |
+
output_vid = gr.Video(visible=False)
|
| 168 |
+
|
| 169 |
+
video_in.upload(preprocess_video, [video_in, state], [drawer, points_map, output_img, output_vid, state])
|
| 170 |
+
video_in.change(preprocess_video, [video_in, state], [drawer, points_map, output_img, output_vid, state])
|
| 171 |
+
points_map.select(segment_with_points, [ptype, state], [points_map, output_img, state])
|
| 172 |
+
clear_btn.click(clear_points, state, [points_map, output_img, output_vid, state])
|
| 173 |
+
reset_btn.click(reset, state, [video_in, drawer, points_map, output_img, output_vid, state])
|
| 174 |
+
track_btn.click(fn=propagate, inputs=[video_in, state], outputs=[output_vid, state])
|
| 175 |
+
|
| 176 |
+
if __name__ == '__main__':
|
| 177 |
+
demo.queue()
|
| 178 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|