Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -148,23 +148,18 @@ class YOLOWorldDetector:
|
|
| 148 |
|
| 149 |
print(f"Loading {self.model_name} on {self.device}...")
|
| 150 |
try:
|
| 151 |
-
#
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
)
|
| 156 |
-
self.model.to(self.device)
|
| 157 |
-
self.processor = AutoProcessor.from_pretrained(
|
| 158 |
-
f"IDEA-Research/{self.model_name}"
|
| 159 |
-
)
|
| 160 |
-
print("Model loaded successfully!")
|
| 161 |
except Exception as e:
|
| 162 |
-
print(f"Error loading model: {e}")
|
| 163 |
-
print("Falling back to YOLOv8 for detection...")
|
| 164 |
-
# Fallback to YOLOv8
|
| 165 |
-
self.model =
|
| 166 |
-
self.
|
| 167 |
-
|
| 168 |
|
| 169 |
# Segmentation models
|
| 170 |
self.seg_models = {}
|
|
@@ -176,15 +171,18 @@ class YOLOWorldDetector:
|
|
| 176 |
|
| 177 |
print(f"Loading {self.model_name} on {self.device}...")
|
| 178 |
try:
|
| 179 |
-
#
|
| 180 |
from ultralytics import YOLOWorld
|
| 181 |
self.model = YOLOWorld(self.model_name)
|
| 182 |
-
|
|
|
|
| 183 |
except Exception as e:
|
| 184 |
print(f"Error loading YOLOWorld model: {e}")
|
| 185 |
print("Falling back to standard YOLOv8 for detection...")
|
| 186 |
-
# Fallback to YOLOv8
|
| 187 |
self.model = YOLO("yolov8n.pt")
|
|
|
|
|
|
|
| 188 |
return f"Using {self.model_name} model"
|
| 189 |
|
| 190 |
def load_seg_model(self, model_name):
|
|
@@ -198,28 +196,33 @@ class YOLOWorldDetector:
|
|
| 198 |
if image is None:
|
| 199 |
return None, "No image provided"
|
| 200 |
|
| 201 |
-
try:
|
| 202 |
-
# Check if we're using YOLOWorld or standard YOLO
|
| 203 |
-
from ultralytics import YOLOWorld
|
| 204 |
-
is_yoloworld = isinstance(self.model, YOLOWorld)
|
| 205 |
-
except:
|
| 206 |
-
is_yoloworld = False
|
| 207 |
-
|
| 208 |
# Process the image
|
| 209 |
if isinstance(image, str):
|
| 210 |
img_for_json = cv2.imread(image)
|
| 211 |
elif isinstance(image, np.ndarray):
|
| 212 |
img_for_json = image.copy()
|
|
|
|
|
|
|
|
|
|
| 213 |
|
| 214 |
-
# Run inference
|
| 215 |
-
if
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 223 |
else:
|
| 224 |
# Standard YOLO doesn't use text prompts
|
| 225 |
results = self.model.predict(
|
|
|
|
| 148 |
|
| 149 |
print(f"Loading {self.model_name} on {self.device}...")
|
| 150 |
try:
|
| 151 |
+
# Try to load using Ultralytics YOLOWorld
|
| 152 |
+
from ultralytics import YOLOWorld
|
| 153 |
+
self.model = YOLOWorld(self.model_name)
|
| 154 |
+
self.model_type = "yoloworld"
|
| 155 |
+
print("YOLOWorld model loaded successfully!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
except Exception as e:
|
| 157 |
+
print(f"Error loading YOLOWorld model: {e}")
|
| 158 |
+
print("Falling back to standard YOLOv8 for detection...")
|
| 159 |
+
# Fallback to YOLOv8
|
| 160 |
+
self.model = YOLO("yolov8n.pt")
|
| 161 |
+
self.model_type = "yolov8"
|
| 162 |
+
print("YOLOv8 fallback model loaded successfully!")
|
| 163 |
|
| 164 |
# Segmentation models
|
| 165 |
self.seg_models = {}
|
|
|
|
| 171 |
|
| 172 |
print(f"Loading {self.model_name} on {self.device}...")
|
| 173 |
try:
|
| 174 |
+
# Try to load using Ultralytics YOLOWorld
|
| 175 |
from ultralytics import YOLOWorld
|
| 176 |
self.model = YOLOWorld(self.model_name)
|
| 177 |
+
self.model_type = "yoloworld"
|
| 178 |
+
print("YOLOWorld model loaded successfully!")
|
| 179 |
except Exception as e:
|
| 180 |
print(f"Error loading YOLOWorld model: {e}")
|
| 181 |
print("Falling back to standard YOLOv8 for detection...")
|
| 182 |
+
# Fallback to YOLOv8
|
| 183 |
self.model = YOLO("yolov8n.pt")
|
| 184 |
+
self.model_type = "yolov8"
|
| 185 |
+
print("YOLOv8 fallback model loaded successfully!")
|
| 186 |
return f"Using {self.model_name} model"
|
| 187 |
|
| 188 |
def load_seg_model(self, model_name):
|
|
|
|
| 196 |
if image is None:
|
| 197 |
return None, "No image provided"
|
| 198 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
# Process the image
|
| 200 |
if isinstance(image, str):
|
| 201 |
img_for_json = cv2.imread(image)
|
| 202 |
elif isinstance(image, np.ndarray):
|
| 203 |
img_for_json = image.copy()
|
| 204 |
+
else:
|
| 205 |
+
# Convert PIL Image to numpy array if needed
|
| 206 |
+
img_for_json = np.array(image)
|
| 207 |
|
| 208 |
+
# Run inference based on model type
|
| 209 |
+
if self.model_type == "yoloworld":
|
| 210 |
+
try:
|
| 211 |
+
# YOLOWorld supports text prompts
|
| 212 |
+
results = self.model.predict(
|
| 213 |
+
source=image,
|
| 214 |
+
classes=text_prompt.split(','),
|
| 215 |
+
conf=confidence_threshold,
|
| 216 |
+
verbose=False
|
| 217 |
+
)
|
| 218 |
+
except Exception as e:
|
| 219 |
+
print(f"Error during YOLOWorld inference: {e}")
|
| 220 |
+
# If YOLOWorld inference fails, try to use it as standard YOLO
|
| 221 |
+
results = self.model.predict(
|
| 222 |
+
source=image,
|
| 223 |
+
conf=confidence_threshold,
|
| 224 |
+
verbose=False
|
| 225 |
+
)
|
| 226 |
else:
|
| 227 |
# Standard YOLO doesn't use text prompts
|
| 228 |
results = self.model.predict(
|