|
import gradio as gr |
|
import numpy as np |
|
import random |
|
|
|
import spaces |
|
import torch |
|
|
|
from diffusers import FluxPriorReduxPipeline, FluxPipeline |
|
from diffusers.utils import load_image |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
MAX_IMAGE_SIZE = 2048 |
|
|
|
pipe_prior_redux = FluxPriorReduxPipeline.from_pretrained( |
|
"black-forest-labs/FLUX.1-Redux-dev", |
|
torch_dtype=torch.bfloat16 |
|
).to("cuda") |
|
|
|
pipe = FluxPipeline.from_pretrained( |
|
"black-forest-labs/FLUX.1-dev" , |
|
text_encoder=None, |
|
text_encoder_2=None, |
|
torch_dtype=torch.bfloat16 |
|
).to("cuda") |
|
|
|
@spaces.GPU |
|
def infer(control_image, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)): |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
pipe_prior_output = pipe_prior_redux(control_image) |
|
images = pipe( |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
generator=torch.Generator("cpu").manual_seed(seed), |
|
**pipe_prior_output, |
|
).images[0] |
|
return images, seed |
|
|
|
css=""" |
|
#col-container { |
|
margin: 0 auto; |
|
max-width: 960px; |
|
} |
|
""" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
|
|
with gr.Column(elem_id="col-container"): |
|
gr.Markdown(f"""# FLUX.1 Redux [dev] |
|
An adapter for FLUX [dev] to create image variations |
|
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)] |
|
""") |
|
with gr.Row(): |
|
with gr.Column(): |
|
input_image = gr.Image(label="Image to create variations", type="pil") |
|
run_button = gr.Button("Run") |
|
result = gr.Image(label="Result", show_label=False) |
|
|
|
with gr.Accordion("Advanced Settings", open=False): |
|
|
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
|
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
|
|
with gr.Row(): |
|
|
|
width = gr.Slider( |
|
label="Width", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=1024, |
|
) |
|
|
|
height = gr.Slider( |
|
label="Height", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=1024, |
|
) |
|
|
|
with gr.Row(): |
|
|
|
guidance_scale = gr.Slider( |
|
label="Guidance Scale", |
|
minimum=1, |
|
maximum=15, |
|
step=0.1, |
|
value=3.5, |
|
) |
|
|
|
num_inference_steps = gr.Slider( |
|
label="Number of inference steps", |
|
minimum=1, |
|
maximum=50, |
|
step=1, |
|
value=28, |
|
) |
|
|
|
gr.on( |
|
triggers=[run_button.click], |
|
fn = infer, |
|
inputs = [input_image, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], |
|
outputs = [result, seed] |
|
) |
|
|
|
demo.launch() |