Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
-
from fastapi import FastAPI
|
|
|
2 |
from pydantic import BaseModel
|
3 |
import torch
|
4 |
from transformers import (
|
@@ -13,21 +14,26 @@ import uuid
|
|
13 |
import os
|
14 |
from typing import Optional
|
15 |
|
16 |
-
#
|
17 |
-
app = FastAPI()
|
18 |
|
19 |
-
#
|
20 |
MODEL_PATH = "/app/models/suno-bark"
|
21 |
SENTIMENT_MODEL_PATH = "/app/models/sentiment"
|
|
|
22 |
|
23 |
-
#
|
|
|
|
|
|
|
|
|
24 |
try:
|
25 |
-
# TTS
|
26 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
|
27 |
processor = AutoProcessor.from_pretrained(MODEL_PATH)
|
28 |
model = BarkModel.from_pretrained(MODEL_PATH)
|
29 |
-
|
30 |
-
# Sentiment
|
31 |
sentiment_tokenizer = AutoTokenizer.from_pretrained(SENTIMENT_MODEL_PATH)
|
32 |
sentiment_model = AutoModelForSequenceClassification.from_pretrained(SENTIMENT_MODEL_PATH)
|
33 |
sentiment_pipeline = pipeline(
|
@@ -37,15 +43,15 @@ try:
|
|
37 |
truncation=True,
|
38 |
max_length=512
|
39 |
)
|
40 |
-
|
41 |
-
# Device
|
42 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
43 |
model.to(device)
|
44 |
-
|
45 |
except Exception as e:
|
46 |
-
raise RuntimeError(f"
|
47 |
|
48 |
-
# Request
|
49 |
class TTSRequest(BaseModel):
|
50 |
text: str
|
51 |
|
@@ -56,63 +62,55 @@ class LegalDocRequest(BaseModel):
|
|
56 |
text: str
|
57 |
domain: Optional[str] = "general"
|
58 |
|
|
|
59 |
@app.get("/")
|
60 |
def root():
|
61 |
return {"message": "Welcome to Kinyarwanda NLP API"}
|
62 |
|
|
|
63 |
@app.post("/tts/")
|
64 |
def text_to_speech(request: TTSRequest):
|
65 |
-
output_file =
|
|
|
66 |
try:
|
67 |
inputs = processor(request.text, return_tensors="pt").to(device)
|
68 |
with torch.no_grad():
|
69 |
-
|
70 |
-
|
71 |
-
output_file =
|
72 |
-
|
73 |
-
|
74 |
return FileResponse(
|
75 |
output_file,
|
76 |
media_type="audio/wav",
|
77 |
-
filename=output_file
|
78 |
)
|
79 |
-
|
80 |
except Exception as e:
|
81 |
-
|
82 |
-
|
83 |
-
content={"error": f"TTS failed: {str(e)}"}
|
84 |
-
)
|
85 |
-
|
86 |
finally:
|
87 |
-
if
|
88 |
os.remove(output_file)
|
89 |
|
|
|
90 |
@app.post("/sentiment/")
|
91 |
def analyze_sentiment(request: SentimentRequest):
|
92 |
try:
|
93 |
result = sentiment_pipeline(request.text)
|
94 |
return {"result": result}
|
95 |
-
|
96 |
except Exception as e:
|
97 |
-
|
98 |
-
status_code=500,
|
99 |
-
content={"error": f"Sentiment analysis failed: {str(e)}"}
|
100 |
-
)
|
101 |
|
|
|
102 |
@app.post("/legal-parse/")
|
103 |
def parse_legal_document(request: LegalDocRequest):
|
104 |
try:
|
105 |
keywords = ["contract", "agreement", "party", "terms", "confidential", "jurisdiction"]
|
106 |
-
|
107 |
-
|
108 |
return {
|
109 |
-
"identified_keywords":
|
110 |
"domain": request.domain,
|
111 |
"status": "success"
|
112 |
}
|
113 |
-
|
114 |
except Exception as e:
|
115 |
-
|
116 |
-
status_code=500,
|
117 |
-
content={"error": f"Legal parsing failed: {str(e)}"}
|
118 |
-
)
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
+
from fastapi.responses import FileResponse, JSONResponse
|
3 |
from pydantic import BaseModel
|
4 |
import torch
|
5 |
from transformers import (
|
|
|
14 |
import os
|
15 |
from typing import Optional
|
16 |
|
17 |
+
# FastAPI instance
|
18 |
+
app = FastAPI(title="Kinyarwanda NLP API", version="1.0")
|
19 |
|
20 |
+
# Config
|
21 |
MODEL_PATH = "/app/models/suno-bark"
|
22 |
SENTIMENT_MODEL_PATH = "/app/models/sentiment"
|
23 |
+
SAMPLE_RATE = 24000
|
24 |
|
25 |
+
# Ensure working directory for audio
|
26 |
+
AUDIO_DIR = "/tmp/audio"
|
27 |
+
os.makedirs(AUDIO_DIR, exist_ok=True)
|
28 |
+
|
29 |
+
# Load models
|
30 |
try:
|
31 |
+
# TTS
|
32 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
|
33 |
processor = AutoProcessor.from_pretrained(MODEL_PATH)
|
34 |
model = BarkModel.from_pretrained(MODEL_PATH)
|
35 |
+
|
36 |
+
# Sentiment
|
37 |
sentiment_tokenizer = AutoTokenizer.from_pretrained(SENTIMENT_MODEL_PATH)
|
38 |
sentiment_model = AutoModelForSequenceClassification.from_pretrained(SENTIMENT_MODEL_PATH)
|
39 |
sentiment_pipeline = pipeline(
|
|
|
43 |
truncation=True,
|
44 |
max_length=512
|
45 |
)
|
46 |
+
|
47 |
+
# Device config
|
48 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
49 |
model.to(device)
|
50 |
+
|
51 |
except Exception as e:
|
52 |
+
raise RuntimeError(f"Model initialization failed: {e}")
|
53 |
|
54 |
+
# Request schemas
|
55 |
class TTSRequest(BaseModel):
|
56 |
text: str
|
57 |
|
|
|
62 |
text: str
|
63 |
domain: Optional[str] = "general"
|
64 |
|
65 |
+
# Root route
|
66 |
@app.get("/")
|
67 |
def root():
|
68 |
return {"message": "Welcome to Kinyarwanda NLP API"}
|
69 |
|
70 |
+
# Text-to-Speech endpoint
|
71 |
@app.post("/tts/")
|
72 |
def text_to_speech(request: TTSRequest):
|
73 |
+
output_file = os.path.join(AUDIO_DIR, f"tts_{uuid.uuid4().hex}.wav")
|
74 |
+
|
75 |
try:
|
76 |
inputs = processor(request.text, return_tensors="pt").to(device)
|
77 |
with torch.no_grad():
|
78 |
+
audio_array = model.generate(**inputs)
|
79 |
+
|
80 |
+
wavfile.write(output_file, rate=SAMPLE_RATE, data=audio_array.cpu().numpy().squeeze())
|
81 |
+
|
|
|
82 |
return FileResponse(
|
83 |
output_file,
|
84 |
media_type="audio/wav",
|
85 |
+
filename=os.path.basename(output_file)
|
86 |
)
|
87 |
+
|
88 |
except Exception as e:
|
89 |
+
raise HTTPException(status_code=500, detail=f"TTS generation failed: {str(e)}")
|
90 |
+
|
|
|
|
|
|
|
91 |
finally:
|
92 |
+
if os.path.exists(output_file):
|
93 |
os.remove(output_file)
|
94 |
|
95 |
+
# Sentiment Analysis endpoint
|
96 |
@app.post("/sentiment/")
|
97 |
def analyze_sentiment(request: SentimentRequest):
|
98 |
try:
|
99 |
result = sentiment_pipeline(request.text)
|
100 |
return {"result": result}
|
|
|
101 |
except Exception as e:
|
102 |
+
raise HTTPException(status_code=500, detail=f"Sentiment analysis failed: {str(e)}")
|
|
|
|
|
|
|
103 |
|
104 |
+
# Legal Parsing endpoint
|
105 |
@app.post("/legal-parse/")
|
106 |
def parse_legal_document(request: LegalDocRequest):
|
107 |
try:
|
108 |
keywords = ["contract", "agreement", "party", "terms", "confidential", "jurisdiction"]
|
109 |
+
found = [kw for kw in keywords if kw in request.text.lower()]
|
|
|
110 |
return {
|
111 |
+
"identified_keywords": found,
|
112 |
"domain": request.domain,
|
113 |
"status": "success"
|
114 |
}
|
|
|
115 |
except Exception as e:
|
116 |
+
raise HTTPException(status_code=500, detail=f"Legal parsing failed: {str(e)}")
|
|
|
|
|
|