Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
-
from fastapi import FastAPI
|
2 |
-
from fastapi.responses import FileResponse, JSONResponse
|
3 |
from pydantic import BaseModel
|
4 |
import torch
|
5 |
from transformers import AutoTokenizer, AutoProcessor, BarkModel, pipeline
|
@@ -8,30 +7,34 @@ import uuid
|
|
8 |
import os
|
9 |
from typing import Optional
|
10 |
|
11 |
-
#
|
|
|
|
|
|
|
12 |
MODEL_PATH = "/app/models/suno-bark"
|
|
|
13 |
|
14 |
-
# Load models
|
15 |
try:
|
|
|
16 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
|
17 |
processor = AutoProcessor.from_pretrained(MODEL_PATH)
|
18 |
model = BarkModel.from_pretrained(MODEL_PATH)
|
19 |
|
20 |
-
#
|
21 |
-
|
22 |
"sentiment-analysis",
|
23 |
-
model=
|
|
|
|
|
24 |
)
|
25 |
|
|
|
|
|
|
|
|
|
26 |
except Exception as e:
|
27 |
-
raise RuntimeError(f"
|
28 |
-
|
29 |
-
# Device configuration
|
30 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
31 |
-
model.to(device)
|
32 |
-
|
33 |
-
# Initialize FastAPI app
|
34 |
-
app = FastAPI()
|
35 |
|
36 |
# Request models
|
37 |
class TTSRequest(BaseModel):
|
@@ -46,10 +49,11 @@ class LegalDocRequest(BaseModel):
|
|
46 |
|
47 |
@app.get("/")
|
48 |
def root():
|
49 |
-
return {"message": "Welcome to Kinyarwanda
|
50 |
|
51 |
@app.post("/tts/")
|
52 |
def text_to_speech(request: TTSRequest):
|
|
|
53 |
try:
|
54 |
inputs = processor(request.text, return_tensors="pt").to(device)
|
55 |
with torch.no_grad():
|
@@ -58,26 +62,37 @@ def text_to_speech(request: TTSRequest):
|
|
58 |
output_file = f"output_{uuid.uuid4().hex}.wav"
|
59 |
wavfile.write(output_file, rate=24000, data=speech.cpu().numpy().squeeze())
|
60 |
|
61 |
-
return FileResponse(
|
|
|
|
|
|
|
|
|
62 |
|
63 |
except Exception as e:
|
64 |
-
return JSONResponse(
|
|
|
|
|
|
|
|
|
65 |
finally:
|
66 |
-
if os.path.exists(output_file):
|
67 |
os.remove(output_file)
|
68 |
|
69 |
@app.post("/sentiment/")
|
70 |
def analyze_sentiment(request: SentimentRequest):
|
71 |
try:
|
72 |
-
result =
|
73 |
return {"result": result}
|
|
|
74 |
except Exception as e:
|
75 |
-
return JSONResponse(
|
|
|
|
|
|
|
76 |
|
77 |
@app.post("/legal-parse/")
|
78 |
def parse_legal_document(request: LegalDocRequest):
|
79 |
try:
|
80 |
-
# Basic keyword extraction (replace with trained model in production)
|
81 |
keywords = ["contract", "agreement", "party", "terms", "confidential", "jurisdiction"]
|
82 |
found_keywords = [kw for kw in keywords if kw in request.text.lower()]
|
83 |
|
@@ -86,5 +101,9 @@ def parse_legal_document(request: LegalDocRequest):
|
|
86 |
"domain": request.domain,
|
87 |
"status": "success"
|
88 |
}
|
|
|
89 |
except Exception as e:
|
90 |
-
return JSONResponse(
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI
|
|
|
2 |
from pydantic import BaseModel
|
3 |
import torch
|
4 |
from transformers import AutoTokenizer, AutoProcessor, BarkModel, pipeline
|
|
|
7 |
import os
|
8 |
from typing import Optional
|
9 |
|
10 |
+
# Initialize FastAPI app
|
11 |
+
app = FastAPI()
|
12 |
+
|
13 |
+
# Configuration
|
14 |
MODEL_PATH = "/app/models/suno-bark"
|
15 |
+
SENTIMENT_MODEL = "cardiffnlp/twitter-xlm-roberta-base-sentiment" # PyTorch-compatible model
|
16 |
|
17 |
+
# Load all models in a single try-except block
|
18 |
try:
|
19 |
+
# TTS Model
|
20 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
|
21 |
processor = AutoProcessor.from_pretrained(MODEL_PATH)
|
22 |
model = BarkModel.from_pretrained(MODEL_PATH)
|
23 |
|
24 |
+
# Sentiment Analysis Model
|
25 |
+
sentiment_pipeline = pipeline(
|
26 |
"sentiment-analysis",
|
27 |
+
model=SENTIMENT_MODEL,
|
28 |
+
truncation=True,
|
29 |
+
max_length=512
|
30 |
)
|
31 |
|
32 |
+
# Device configuration
|
33 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
34 |
+
model.to(device)
|
35 |
+
|
36 |
except Exception as e:
|
37 |
+
raise RuntimeError(f"Initialization failed: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
# Request models
|
40 |
class TTSRequest(BaseModel):
|
|
|
49 |
|
50 |
@app.get("/")
|
51 |
def root():
|
52 |
+
return {"message": "Welcome to Kinyarwanda-Engine"}
|
53 |
|
54 |
@app.post("/tts/")
|
55 |
def text_to_speech(request: TTSRequest):
|
56 |
+
output_file = None
|
57 |
try:
|
58 |
inputs = processor(request.text, return_tensors="pt").to(device)
|
59 |
with torch.no_grad():
|
|
|
62 |
output_file = f"output_{uuid.uuid4().hex}.wav"
|
63 |
wavfile.write(output_file, rate=24000, data=speech.cpu().numpy().squeeze())
|
64 |
|
65 |
+
return FileResponse(
|
66 |
+
output_file,
|
67 |
+
media_type="audio/wav",
|
68 |
+
filename=output_file
|
69 |
+
)
|
70 |
|
71 |
except Exception as e:
|
72 |
+
return JSONResponse(
|
73 |
+
status_code=500,
|
74 |
+
content={"error": f"TTS failed: {str(e)}"}
|
75 |
+
)
|
76 |
+
|
77 |
finally:
|
78 |
+
if output_file and os.path.exists(output_file):
|
79 |
os.remove(output_file)
|
80 |
|
81 |
@app.post("/sentiment/")
|
82 |
def analyze_sentiment(request: SentimentRequest):
|
83 |
try:
|
84 |
+
result = sentiment_pipeline(request.text)
|
85 |
return {"result": result}
|
86 |
+
|
87 |
except Exception as e:
|
88 |
+
return JSONResponse(
|
89 |
+
status_code=500,
|
90 |
+
content={"error": f"Sentiment analysis failed: {str(e)}"}
|
91 |
+
)
|
92 |
|
93 |
@app.post("/legal-parse/")
|
94 |
def parse_legal_document(request: LegalDocRequest):
|
95 |
try:
|
|
|
96 |
keywords = ["contract", "agreement", "party", "terms", "confidential", "jurisdiction"]
|
97 |
found_keywords = [kw for kw in keywords if kw in request.text.lower()]
|
98 |
|
|
|
101 |
"domain": request.domain,
|
102 |
"status": "success"
|
103 |
}
|
104 |
+
|
105 |
except Exception as e:
|
106 |
+
return JSONResponse(
|
107 |
+
status_code=500,
|
108 |
+
content={"error": f"Legal parsing failed: {str(e)}"}
|
109 |
+
)
|