File size: 9,998 Bytes
918bdb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b9a6b5
 
 
918bdb4
2004c79
918bdb4
2004c79
3b9a6b5
918bdb4
3b9a6b5
918bdb4
 
3b9a6b5
 
600ed2b
 
 
3b9a6b5
918bdb4
 
 
 
3b9a6b5
600ed2b
3b9a6b5
600ed2b
3b9a6b5
 
 
918bdb4
 
 
 
 
600ed2b
 
 
 
918bdb4
 
 
 
 
 
3b9a6b5
600ed2b
918bdb4
 
600ed2b
 
 
 
 
 
 
 
918bdb4
600ed2b
918bdb4
 
 
 
 
600ed2b
918bdb4
 
 
 
 
600ed2b
 
 
918bdb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b9a6b5
918bdb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2004c79
918bdb4
 
 
 
 
 
 
2004c79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
600ed2b
 
2004c79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
918bdb4
 
 
 
 
 
 
 
 
 
3b9a6b5
918bdb4
 
 
 
 
600ed2b
 
918bdb4
 
 
 
 
 
 
 
 
 
 
 
 
 
3b9a6b5
 
918bdb4
 
 
600ed2b
918bdb4
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
"""
MCP (Model Context Protocol) Handlers for Yuga Planner

This module provides an MCP tool endpoint for external integrations and is separate from the Gradio UI's workflow.

Key Features:
- Centralized logging integration with debug mode support
- Performance timing for API monitoring
- Comprehensive error handling for external consumers
- Automatic debug mode detection from environment variables

Usage:
    The main endpoint is registered as a Gradio API and can be called by MCP clients:

    POST /api/process_message_and_attached_file
    {
        "file_path": "/path/to/calendar.ics",
        "message_body": "Create tasks for this week's meetings"
    }

Environment Variables:
    YUGA_DEBUG: Set to "true" to enable detailed debug logging for API requests

Logging:
    - Uses centralized logging system from utils.logging_config
    - Respects YUGA_DEBUG environment variable (from CLI flag --debug)
    - Includes performance timing and detailed error information
    - Provides different log levels for production vs development usage
"""

import time

from utils.extract_calendar import extract_ical_entries

from factory.data.provider import generate_mcp_data
from services import ScheduleService, StateService
from factory.data.formatters import schedule_to_dataframe

from utils.logging_config import setup_logging, get_logger, is_debug_enabled

setup_logging()
logger = get_logger(__name__)


async def process_message_and_attached_file(
    file_content: bytes, message_body: str, file_name: str = "calendar.ics"
) -> dict:
    """
    MCP API endpoint for processing calendar files and task descriptions.

    This is a separate workflow from the main Gradio UI and handles external API requests.

    Args:
        file_content (bytes): The actual file content bytes (typically .ics calendar file)
        message_body (str): The body of the last chat message, which contains the task description
        file_name (str): Optional filename for logging purposes
    Returns:
        dict: Contains confirmation, file info, calendar entries, error, and solved schedule info
    """

    # Determine debug mode from environment or default to False for API calls
    debug_mode = is_debug_enabled()

    logger.info("MCP Handler: Processing message with attached file")
    logger.debug("File name: %s", file_name)
    logger.debug(
        "File content size: %d bytes", len(file_content) if file_content else 0
    )
    logger.debug("Message: %s", message_body)
    logger.debug("Debug mode: %s", debug_mode)

    # Track timing for API performance
    start_time = time.time()

    try:
        # Step 1: Extract calendar entries from the file content
        logger.info("Step 1: Extracting calendar entries...")

        if not file_content:
            logger.error("No file content provided")
            return {
                "error": "No file content provided",
                "status": "no_file_content",
                "timestamp": time.time(),
                "processing_time_seconds": time.time() - start_time,
            }

        calendar_entries, error = extract_ical_entries(file_content)

        if error:
            logger.error("Failed to extract calendar entries: %s", error)
            return {
                "error": f"Failed to extract calendar entries: {error}",
                "status": "calendar_parse_failed",
                "timestamp": time.time(),
                "processing_time_seconds": time.time() - start_time,
            }

        logger.info("Extracted %d calendar entries", len(calendar_entries))

        # Log the calendar entries for debugging
        if debug_mode and calendar_entries:
            logger.debug(
                "Calendar entries details: %s",
                [e.get("summary", "No summary") for e in calendar_entries[:5]],
            )

        # Step 2: Generate MCP data (combines calendar and LLM tasks)
        logger.info("Step 2: Generating tasks using MCP data provider...")

        schedule_data = await generate_mcp_data(
            calendar_entries=calendar_entries,
            user_message=message_body,
            project_id="PROJECT",
            employee_count=1,  # MCP uses single user
            days_in_schedule=365,
        )

        logger.info("Generated schedule with %d total tasks", len(schedule_data))

        # Step 3: Convert to format needed for solving
        logger.info("Step 3: Preparing schedule for solving...")

        # Create state data format expected by ScheduleService
        state_data = {
            "task_df_json": schedule_data.to_json(orient="split"),
            "employee_count": 1,
            "days_in_schedule": 365,
        }

        # Step 4: Start solving the schedule
        logger.info("Step 4: Starting schedule solver...")

        (
            emp_df,
            task_df,
            job_id,
            status,
            state_data,
        ) = await ScheduleService.solve_schedule_from_state(
            state_data=state_data,
            job_id=None,
            debug=debug_mode,  # Respect debug mode for MCP calls
        )

        logger.info("Solver started with job_id: %s", job_id)
        logger.debug("Initial status: %s", status)

        # Step 5: Poll until the schedule is solved
        logger.info("Step 5: Polling for solution...")

        max_polls = 60  # Maximum 60 polls (about 2 minutes)
        poll_interval = 2  # Poll every 2 seconds

        for poll_count in range(max_polls):
            if StateService.has_solved_schedule(job_id):
                solved_schedule = StateService.get_solved_schedule(job_id)

                # Check if we have a valid solution
                if solved_schedule is not None:
                    processing_time = time.time() - start_time
                    logger.info(
                        "Schedule solved after %d polls! (Total time: %.2fs)",
                        poll_count + 1,
                        processing_time,
                    )

                    try:
                        # Convert to final dataframe
                        final_df = schedule_to_dataframe(solved_schedule)

                        # Generate status message
                        status_message = ScheduleService.generate_status_message(
                            solved_schedule
                        )

                        logger.info("Final Status: %s", status_message)

                        # Return comprehensive JSON response
                        response_data = {
                            "status": "success",
                            "message": "Schedule solved successfully",
                            "file_info": {
                                "name": file_name,
                                "size_bytes": len(file_content),
                                "calendar_entries_count": len(calendar_entries),
                            },
                            "calendar_entries": calendar_entries,
                            "solution_status": status_message,
                            "schedule": final_df.to_dict(
                                orient="records"
                            ),  # Convert to list of dicts for JSON
                            "job_id": job_id,
                            "polls_required": poll_count + 1,
                            "processing_time_seconds": processing_time,
                            "timestamp": time.time(),
                            "debug_mode": debug_mode,
                        }

                        logger.debug(
                            "Returning JSON response with %d schedule entries",
                            len(response_data["schedule"]),
                        )
                        return response_data

                    except Exception as e:
                        logger.error(
                            "Error converting schedule to JSON: %s",
                            e,
                            exc_info=debug_mode,
                        )
                        # Return error response instead of raising
                        return {
                            "error": f"Error converting schedule to JSON: {str(e)}",
                            "status": "conversion_failed",
                            "job_id": job_id,
                            "processing_time_seconds": processing_time,
                            "timestamp": time.time(),
                            "debug_mode": debug_mode,
                        }

            if debug_mode:
                logger.debug("Poll %d/%d: Still solving...", poll_count + 1, max_polls)

            time.sleep(poll_interval)

        # If we get here, polling timed out
        processing_time = time.time() - start_time
        logger.warning(
            "Polling timed out after %.2fs - returning partial results", processing_time
        )

        return {
            "status": "timeout",
            "message": "Schedule solving timed out after maximum polls",
            "file_info": {
                "name": file_name,
                "size_bytes": len(file_content),
                "calendar_entries_count": len(calendar_entries),
            },
            "calendar_entries": calendar_entries,
            "job_id": job_id,
            "max_polls_reached": max_polls,
            "processing_time_seconds": processing_time,
            "timestamp": time.time(),
            "debug_mode": debug_mode,
        }

    except Exception as e:
        processing_time = time.time() - start_time
        logger.error(
            "MCP handler error after %.2fs: %s", processing_time, e, exc_info=debug_mode
        )

        return {
            "error": str(e),
            "status": "failed",
            "file_name": file_name,
            "message_body": message_body,
            "processing_time_seconds": processing_time,
            "timestamp": time.time(),
            "debug_mode": debug_mode,
        }