File size: 10,649 Bytes
2004c79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
from typing import Dict, List, Any
from constraint_solvers.timetable.domain import EmployeeSchedule
from constraint_solvers.timetable.solver import solution_manager


class ConstraintAnalyzerService:
    """
    Service for analyzing scheduling solutions using Timefold's native constraint analysis.

    This service provides methods to analyze constraint violations, generate suggestions,
    and understand solution quality using Timefold's built-in ScoreAnalysis and SolutionManager APIs.
    """

    @staticmethod
    def analyze_constraint_violations(schedule: EmployeeSchedule) -> str:
        """
        Analyze constraint violations in a schedule using Timefold's native score analysis.

        Args:
            schedule: The schedule to analyze

        Returns:
            Detailed string describing constraint violations and their breakdown
        """
        if not schedule.score or schedule.score.hard_score >= 0:
            return "No constraint violations detected."

        # Get Timefold's solution manager and analyze the schedule
        score_analysis = solution_manager.analyze(schedule)

        # Return the built-in summary
        return score_analysis.summary

    @staticmethod
    def get_detailed_analysis(schedule: EmployeeSchedule) -> Dict[str, Any]:
        """
        Get detailed constraint analysis as a structured dictionary.

        Args:
            schedule: The schedule to analyze

        Returns:
            Dictionary containing detailed constraint analysis information
        """
        score_analysis = solution_manager.analyze(schedule)

        analysis_result = {
            "total_score": str(score_analysis.score),
            "hard_score": score_analysis.score.hard_score,
            "soft_score": score_analysis.score.soft_score,
            "constraints": {},
        }

        # Analyze each constraint
        for (
            constraint_ref,
            constraint_analysis,
        ) in score_analysis.constraint_map.items():
            constraint_id = constraint_ref.constraint_id
            constraint_info = {
                "score": str(constraint_analysis.score),
                "match_count": constraint_analysis.match_count,
                "matches": [],
            }

            # Get details for each constraint match
            for match_analysis in constraint_analysis.matches:
                match_info = {
                    "score": str(match_analysis.score),
                    "justification": str(match_analysis.justification)
                    if match_analysis.justification
                    else None,
                }
                constraint_info["matches"].append(match_info)

            analysis_result["constraints"][constraint_id] = constraint_info

        return analysis_result

    @staticmethod
    def get_broken_constraints(schedule: EmployeeSchedule) -> List[Dict[str, Any]]:
        """
        Get a list of broken constraints with their details.

        Args:
            schedule: The schedule to analyze

        Returns:
            List of dictionaries, each containing information about a broken constraint
        """
        score_analysis = solution_manager.analyze(schedule)
        broken_constraints = []

        for (
            constraint_ref,
            constraint_analysis,
        ) in score_analysis.constraint_map.items():
            # Only include constraints that have a negative impact on the score
            if (
                constraint_analysis.score.hard_score < 0
                or constraint_analysis.score.soft_score < 0
            ):

                broken_constraints.append(
                    {
                        "constraint_id": constraint_ref.constraint_id,
                        "score": str(constraint_analysis.score),
                        "hard_score": constraint_analysis.score.hard_score,
                        "soft_score": constraint_analysis.score.soft_score,
                        "match_count": constraint_analysis.match_count,
                        "constraint_name": constraint_ref.constraint_name,
                    }
                )

        return broken_constraints

    @staticmethod
    def compare_solutions(
        old_schedule: EmployeeSchedule, new_schedule: EmployeeSchedule
    ) -> Dict[str, Any]:
        """
        Compare two solutions and identify what changed between them.

        Args:
            old_schedule: The previous schedule solution
            new_schedule: The new schedule solution

        Returns:
            Dictionary containing the differences between the two solutions
        """
        old_analysis = solution_manager.analyze(old_schedule)
        new_analysis = solution_manager.analyze(new_schedule)

        # Calculate the difference
        diff = old_analysis - new_analysis

        comparison_result = {
            "old_score": str(old_analysis.score),
            "new_score": str(new_analysis.score),
            "score_difference": str(diff.score),
            "improved": (
                new_analysis.score.hard_score > old_analysis.score.hard_score
                or (
                    new_analysis.score.hard_score == old_analysis.score.hard_score
                    and new_analysis.score.soft_score > old_analysis.score.soft_score
                )
            ),
            "changed_constraints": {},
        }

        # Analyze changes in constraints
        for constraint_ref, constraint_analysis in diff.constraint_map.items():
            comparison_result["changed_constraints"][constraint_ref.constraint_id] = {
                "score_difference": str(constraint_analysis.score),
                "match_count": constraint_analysis.match_count,
                "changes": [
                    str(match.justification)
                    for match in constraint_analysis.matches
                    if match.justification
                ],
            }

        return comparison_result

    @staticmethod
    def get_heat_map_data(schedule: EmployeeSchedule) -> Dict[Any, Dict[str, Any]]:
        """
        Get heat map data showing which planning entities have the most constraint violations.

        Args:
            schedule: The schedule to analyze

        Returns:
            Dictionary mapping planning entities to their constraint impact
        """
        score_explanation = solution_manager.explain(schedule)
        indictment_map = score_explanation.indictment_map

        heat_map_data = {}

        # Process indictments for tasks
        for task in schedule.tasks:
            indictment = indictment_map.get(task)

            if indictment is not None:
                heat_map_data[task] = {
                    "total_score": str(indictment.score),
                    "hard_score": indictment.score.hard_score,
                    "soft_score": indictment.score.soft_score,
                    "constraint_matches": [
                        {
                            "constraint_name": match.constraint_name,
                            "score": str(match.score),
                        }
                        for match in indictment.constraint_match_set
                    ],
                }

        # Process indictments for employees
        for employee in schedule.employees:
            indictment = indictment_map.get(employee)

            if indictment is not None:
                heat_map_data[employee] = {
                    "total_score": str(indictment.score),
                    "hard_score": indictment.score.hard_score,
                    "soft_score": indictment.score.soft_score,
                    "constraint_matches": [
                        {
                            "constraint_name": match.constraint_name,
                            "score": str(match.score),
                        }
                        for match in indictment.constraint_match_set
                    ],
                }

        return heat_map_data

    @staticmethod
    def generate_improvement_suggestions(schedule: EmployeeSchedule) -> List[str]:
        """
        Generate improvement suggestions based on constraint analysis.

        Args:
            schedule: The schedule to analyze

        Returns:
            List of actionable suggestions for improving the schedule
        """
        if not schedule.score or schedule.score.hard_score >= 0:
            return [
                "Schedule is feasible. Consider optimizing soft constraints for better quality."
            ]

        broken_constraints = ConstraintAnalyzerService.get_broken_constraints(schedule)
        suggestions = []

        # Generate suggestions based on broken constraint types
        for constraint in broken_constraints:
            constraint_id = constraint["constraint_id"].lower()

            match constraint_id:
                case constraint_id if "skill" in constraint_id:
                    suggestions.append(
                        f"Skill constraint violation: Consider adding employees with required skills "
                        f"or reassigning tasks ({constraint['match_count']} violations)"
                    )

                case constraint_id if "availability" in constraint_id or "time" in constraint_id:
                    suggestions.append(
                        f"Time/Availability constraint violation: Check employee schedules and "
                        f"task timing ({constraint['match_count']} violations)"
                    )

                case constraint_id if "sequence" in constraint_id or "order" in constraint_id:
                    suggestions.append(
                        f"Sequencing constraint violation: Review task dependencies and ordering "
                        f"({constraint['match_count']} violations)"
                    )

                case constraint_id if "capacity" in constraint_id or "workload" in constraint_id:
                    suggestions.append(
                        f"Capacity constraint violation: Distribute workload more evenly or "
                        f"add more resources ({constraint['match_count']} violations)"
                    )

                case _:
                    suggestions.append(
                        f"Constraint '{constraint['constraint_id']}' violated "
                        f"({constraint['match_count']} times) - review constraint definition"
                    )

        if not suggestions:
            suggestions.append(
                "Hard constraints violated. Review constraint definitions and problem data."
            )

        return suggestions