Spaces:
Paused
Paused
File size: 17,594 Bytes
918bdb4 e3a1efe 3b9a6b5 2004c79 3b9a6b5 2004c79 3b9a6b5 e466dd5 3b9a6b5 2004c79 918bdb4 3b9a6b5 2004c79 918bdb4 3b9a6b5 918bdb4 3b9a6b5 918bdb4 3b9a6b5 918bdb4 3b9a6b5 918bdb4 3b9a6b5 e3a1efe 47159d2 3b9a6b5 e3a1efe 3b9a6b5 918bdb4 3b9a6b5 918bdb4 3b9a6b5 918bdb4 e3a1efe 3b9a6b5 e3a1efe 3b9a6b5 918bdb4 3b9a6b5 918bdb4 3b9a6b5 918bdb4 e3a1efe 3b9a6b5 918bdb4 3b9a6b5 918bdb4 3b9a6b5 918bdb4 3b9a6b5 e3a1efe 3b9a6b5 e3a1efe 3b9a6b5 e3a1efe 3b9a6b5 918bdb4 3b9a6b5 e3a1efe 3b9a6b5 918bdb4 3b9a6b5 918bdb4 3b9a6b5 918bdb4 3b9a6b5 e3a1efe 3b9a6b5 918bdb4 3b9a6b5 918bdb4 3b9a6b5 918bdb4 3b9a6b5 918bdb4 3b9a6b5 918bdb4 3b9a6b5 918bdb4 3b9a6b5 2004c79 3b9a6b5 2004c79 3b9a6b5 2004c79 3b9a6b5 2004c79 918bdb4 3b9a6b5 918bdb4 3b9a6b5 918bdb4 3b9a6b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 |
import os, uuid, random
from datetime import datetime, date, timezone
from typing import Tuple, Dict, Any, Optional
import pandas as pd
import gradio as gr
from .state import StateService
from constraint_solvers.timetable.solver import solver_manager
from factory.data.provider import (
DATA_PARAMS,
TimeTableDataParameters,
)
from constraint_solvers.timetable.working_hours import SLOTS_PER_WORKING_DAY
from factory.data.generators import (
generate_employees,
generate_employee_availability,
)
from factory.data.formatters import schedule_to_dataframe, employees_to_dataframe
from constraint_solvers.timetable.domain import EmployeeSchedule, ScheduleInfo
from .data import DataService
from .constraint_analyzer import ConstraintAnalyzerService
from utils.logging_config import setup_logging, get_logger
# Initialize logging
setup_logging()
logger = get_logger(__name__)
class ScheduleService:
"""Service for handling schedule solving and management operations"""
@staticmethod
async def solve_schedule_from_state(
state_data: Dict[str, Any], job_id: str, debug: bool = False
) -> Tuple[pd.DataFrame, pd.DataFrame, str, str, Dict[str, Any]]:
"""
Solve a schedule from state data.
Args:
state_data: State data containing task information and parameters
job_id: Job identifier for tracking
debug: Enable debug logging
Returns:
Tuple of (emp_df, task_df, new_job_id, status_message, state_data)
"""
logger.info(f"π§ solve_schedule_from_state called with job_id: {job_id}")
logger.info("π Starting solve process...")
if debug:
os.environ["YUGA_DEBUG"] = "true"
# Reconfigure logging for debug mode
setup_logging("DEBUG")
else:
os.environ["YUGA_DEBUG"] = "false"
# Extract parameters from state data dict
task_df_json = state_data.get("task_df_json")
employee_count = state_data.get("employee_count")
days_in_schedule = state_data.get("days_in_schedule")
if not task_df_json:
logger.warning("β No task_df_json provided to solve_schedule_from_state")
return (
gr.update(),
gr.update(),
None,
"No schedule to solve. Please load data first using the 'Load Data' button.",
None,
)
try:
# Parse task data
task_df = DataService.parse_task_data_from_json(task_df_json, debug)
# Extract base_date from pinned tasks for consistent slot calculations
base_date = None
pinned_tasks = task_df[task_df.get("Pinned", False) == True]
if not pinned_tasks.empty:
# Try to determine base_date from earliest pinned task
earliest_date = None
for _, row in pinned_tasks.iterrows():
start_time = row.get("Start")
if start_time is not None:
try:
if isinstance(start_time, str):
dt = datetime.fromisoformat(
start_time.replace("Z", "+00:00")
)
elif isinstance(start_time, pd.Timestamp):
dt = start_time.to_pydatetime()
elif isinstance(start_time, datetime):
dt = start_time
elif isinstance(start_time, (int, float)):
# Handle Unix timestamp (milliseconds or seconds)
if start_time > 1e10:
dt = datetime.fromtimestamp(
start_time / 1000, tz=timezone.utc
).replace(tzinfo=None)
else:
dt = datetime.fromtimestamp(
start_time, tz=timezone.utc
).replace(tzinfo=None)
else:
logger.debug(
f"Unhandled start_time type for base_date: {type(start_time)} = {start_time}"
)
continue
if earliest_date is None or dt.date() < earliest_date:
earliest_date = dt.date()
except Exception as e:
logger.debug(f"Error parsing start_time for base_date: {e}")
continue
if earliest_date:
base_date = earliest_date
logger.info(f"ποΈ Determined base_date for schedule: {base_date}")
# If no base_date found from pinned tasks, use next Monday as default
if base_date is None:
from factory.data.generators import earliest_monday_on_or_after
base_date = earliest_monday_on_or_after(date.today())
logger.info(
f"ποΈ No pinned tasks found, using next Monday as base_date: {base_date}"
)
# Convert DataFrame to tasks
tasks = DataService.convert_dataframe_to_tasks(task_df, base_date)
# Debug: Log task information if debug is enabled
if debug:
logger.info("π DEBUG: Task information for constraint checking:")
for task in tasks:
logger.info(
f" Task ID: {task.id}, Project: '{task.project_id}', "
f"Sequence: {task.sequence_number}, Description: '{task.description[:30]}...'"
)
# Generate schedule
schedule = ScheduleService.generate_schedule_for_solving(
tasks, employee_count, days_in_schedule, base_date
)
# Start solving
(
emp_df,
solved_task_df,
new_job_id,
status,
) = ScheduleService.solve_schedule(schedule, debug)
logger.info("π Solver process initiated successfully")
return emp_df, solved_task_df, new_job_id, status, state_data
except Exception as e:
logger.error(f"Error in solve_schedule_from_state: {e}")
return (
gr.update(),
gr.update(),
None,
f"Error solving schedule: {str(e)}",
state_data,
)
@staticmethod
def generate_schedule_for_solving(
tasks: list,
employee_count: Optional[int],
days_in_schedule: Optional[int],
base_date: date = None,
) -> EmployeeSchedule:
"""Generate a complete schedule ready for solving"""
parameters: TimeTableDataParameters = DATA_PARAMS
# Override parameters if provided from UI
if employee_count is not None or days_in_schedule is not None:
parameters = TimeTableDataParameters(
skill_set=parameters.skill_set,
days_in_schedule=days_in_schedule
if days_in_schedule is not None
else parameters.days_in_schedule,
employee_count=employee_count
if employee_count is not None
else parameters.employee_count,
optional_skill_distribution=parameters.optional_skill_distribution,
availability_count_distribution=parameters.availability_count_distribution,
random_seed=parameters.random_seed,
)
logger.info("π₯ Generating employees and availability...")
start_date = datetime.now().date()
randomizer = random.Random(parameters.random_seed)
# Analyze tasks to determine what skills are actually needed
required_skills_needed = set()
for task in tasks:
if hasattr(task, "required_skill") and task.required_skill:
required_skills_needed.add(task.required_skill)
logger.info(f"π Tasks require skills: {sorted(required_skills_needed)}")
# Generate employees with skills needed for the tasks
employees = generate_employees(parameters, randomizer, required_skills_needed)
# For single employee scenarios, set name and clear availability constraints
if parameters.employee_count == 1 and len(employees) == 1:
employees[0].name = "Chatbot User"
employees[0].unavailable_dates.clear()
employees[0].undesired_dates.clear()
employees[0].desired_dates.clear()
else:
# Generate employee availability preferences for multi-employee scenarios
logger.info("π
Generating employee availability preferences...")
generate_employee_availability(
employees, parameters, start_date, randomizer
)
logger.info("β
Employee availability generated")
logger.info(f"β
Generated {len(employees)} employees")
# Assign employees to all tasks (both pinned and non-pinned)
# For single employee scenarios, assign the single employee to all tasks
if parameters.employee_count == 1 and len(employees) == 1:
main_employee = employees[0]
for task in tasks:
task.employee = main_employee
logger.debug(
f"Assigned {main_employee.name} to task: {task.description[:30]}..."
)
else:
# For multi-employee scenarios, assign employees based on skills and availability
# This is a simple assignment - the solver will optimize later
for task in tasks:
# Find an employee with the required skill
suitable_employees = [
emp for emp in employees if task.required_skill in emp.skills
]
if suitable_employees:
task.employee = suitable_employees[0] # Simple assignment
else:
# Fallback: assign the first employee
task.employee = employees[0]
logger.warning(
f"No employee found with skill '{task.required_skill}' for task '{task.description[:30]}...', assigned {employees[0].name}"
)
logger.info(f"β
Assigned employees to {len(tasks)} tasks")
return EmployeeSchedule(
employees=employees,
tasks=tasks,
schedule_info=ScheduleInfo(
total_slots=parameters.days_in_schedule * SLOTS_PER_WORKING_DAY,
base_date=base_date,
),
)
@staticmethod
def solve_schedule(
schedule: EmployeeSchedule, debug: bool = False
) -> Tuple[pd.DataFrame, pd.DataFrame, str, str]:
"""
Solve the schedule and return the dataframes and job_id.
Args:
schedule: The schedule to solve
debug: Enable debug logging
Returns:
Tuple of (emp_df, task_df, job_id, status_message)
"""
if schedule is None:
return None, None, None, "No schedule to solve. Please load data first."
job_id: str = str(uuid.uuid4())
# Start solving asynchronously
def listener(solution):
StateService.store_solved_schedule(job_id, solution)
solver_manager.solve_and_listen(job_id, schedule, listener)
emp_df = employees_to_dataframe(schedule)
task_df = schedule_to_dataframe(schedule)
task_df = task_df[
[
"Project",
"Sequence",
"Employee",
"Task",
"Start",
"End",
"Duration (hours)",
"Required Skill",
"Pinned",
]
].sort_values(["Project", "Sequence"])
return emp_df, task_df, job_id, "Solving..."
@staticmethod
def poll_solution(
job_id: str, schedule: EmployeeSchedule, debug: bool = False
) -> Tuple[pd.DataFrame, pd.DataFrame, str, str, object]:
"""
Poll for a solution for a given job_id.
Args:
job_id: The job_id to poll for
schedule: The current schedule state
debug: Whether to enable debug logging
Returns:
Tuple of (emp_df, task_df, job_id, status_message, schedule)
"""
if job_id and StateService.has_solved_schedule(job_id):
solved_schedule: EmployeeSchedule = StateService.get_solved_schedule(job_id)
emp_df: pd.DataFrame = employees_to_dataframe(solved_schedule)
task_df: pd.DataFrame = schedule_to_dataframe(solved_schedule)
if debug:
# Log solved task order for debugging
logger.info("Solved task order:")
for _, row in task_df.iterrows():
logger.info(
f"Project: {row['Project']}, Sequence: {row['Sequence']}, Task: {row['Task'][:30]}, Start: {row['Start']}"
)
task_df = task_df[
[
"Project",
"Sequence",
"Employee",
"Task",
"Start",
"End",
"Duration (hours)",
"Required Skill",
"Pinned",
]
].sort_values(["Start"])
# Check if hard constraints are violated (infeasible solution)
status_message = ScheduleService.generate_status_message(solved_schedule)
return emp_df, task_df, job_id, status_message, solved_schedule
return None, None, job_id, "Solving...", schedule
@staticmethod
async def auto_poll(
job_id: str, llm_output: dict, debug: bool = False
) -> Tuple[pd.DataFrame, pd.DataFrame, str, str, dict]:
"""
Poll for updates asynchronously.
Args:
job_id: Job identifier to poll for
llm_output: Current LLM output state
debug: Enable debug logging
Returns:
Tuple of (emp_df, task_df, job_id, status_message, llm_output)
"""
try:
if job_id and StateService.has_solved_schedule(job_id):
schedule = StateService.get_solved_schedule(job_id)
emp_df = employees_to_dataframe(schedule)
task_df = schedule_to_dataframe(schedule)
# Sort tasks by start time for display
task_df = task_df.sort_values("Start")
if debug:
logger.info(f"Polling for job {job_id}")
logger.info(f"Current schedule state: {task_df.head()}")
# Generate status message based on constraint satisfaction
status_message = ScheduleService.generate_status_message(schedule)
return emp_df, task_df, job_id, status_message, llm_output
except Exception as e:
logger.error(f"Error polling: {e}")
return (
gr.update(),
gr.update(),
job_id,
f"Error polling: {str(e)}",
llm_output,
)
return (
gr.update(),
gr.update(),
None,
"No updates",
llm_output,
)
@staticmethod
def generate_status_message(schedule: EmployeeSchedule) -> str:
"""Generate status message based on schedule score and constraint violations"""
status_message = "Solution updated"
if schedule.score is not None:
hard_score = schedule.score.hard_score
if hard_score < 0:
# Hard constraints are violated - the problem is infeasible
violation_count = abs(int(hard_score))
violation_details = (
ConstraintAnalyzerService.analyze_constraint_violations(schedule)
)
suggestions = (
ConstraintAnalyzerService.generate_improvement_suggestions(schedule)
)
suggestion_text = "\n".join(f"β’ {s}" for s in suggestions)
status_message = (
f"β οΈ CONSTRAINTS VIOLATED: {violation_count} hard constraint(s) could not be satisfied. "
f"The schedule is not feasible.\n\n{violation_details}\n\nSuggestions:\n{suggestion_text}"
)
logger.warning(
f"Infeasible solution detected. Hard score: {hard_score}"
)
else:
soft_score = schedule.score.soft_score
status_message = f"β
Solved successfully! Score: {hard_score}/{soft_score} (hard/soft)"
logger.info(
f"Feasible solution found. Score: {hard_score}/{soft_score}"
)
return status_message
@staticmethod
def start_timer(job_id: str, llm_output: Any) -> gr.Timer:
"""Start a timer for polling (Gradio-specific functionality)"""
return gr.Timer(active=True)
|