Spaces:
Paused
Paused
File size: 3,906 Bytes
118bda1 8feabfd 118bda1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
from typing import Any
import gradio as gr
import PIL
import spaces
import torch
from hi_diffusers import HiDreamImagePipeline, HiDreamImageTransformer2DModel
from hi_diffusers.schedulers.flash_flow_match import (
FlashFlowMatchEulerDiscreteScheduler,
)
from transformers import AutoTokenizer, LlamaForCausalLM
# Constants
MODEL_PREFIX: str = "HiDream-ai"
LLAMA_MODEL_NAME: str = "meta-llama/Meta-Llama-3.1-8B-Instruct"
MODEL_PATH = "HiDream-ai/HiDream-I1-Dev"
MODEL_CONFIGS: dict[str, Any] = {
"guidance_scale": 0.0,
"num_inference_steps": 28,
"shift": 6.0,
"scheduler": FlashFlowMatchEulerDiscreteScheduler,
}
# Model configurations
# MODEL_CONFIGS: dict[str, dict] = {
# "full": {
# "path": f"{MODEL_PREFIX}/HiDream-I1-Full",
# "guidance_scale": 5.0,
# "num_inference_steps": 50,
# "shift": 3.0,
# "scheduler": FlowUniPCMultistepScheduler,
# },
# "fast": {
# "path": f"{MODEL_PREFIX}/HiDream-I1-Fast",
# "guidance_scale": 0.0,
# "num_inference_steps": 16,
# "shift": 3.0,
# "scheduler": FlashFlowMatchEulerDiscreteScheduler,
# },
# }
# Supported image sizes
RESOLUTION_OPTIONS: list[str] = [
"1024 x 1024 (Square)",
"768 x 1360 (Portrait)",
"1360 x 768 (Landscape)",
"880 x 1168 (Portrait)",
"1168 x 880 (Landscape)",
"1248 x 832 (Landscape)",
"832 x 1248 (Portrait)",
]
tokenizer = AutoTokenizer.from_pretrained(LLAMA_MODEL_NAME, use_fast=False)
text_encoder = LlamaForCausalLM.from_pretrained(
LLAMA_MODEL_NAME,
output_hidden_states=True,
output_attentions=True,
torch_dtype=torch.bfloat16,
).to("cuda")
transformer = HiDreamImageTransformer2DModel.from_pretrained(
MODEL_PATH,
subfolder="transformer",
torch_dtype=torch.bfloat16,
).to("cuda")
scheduler = MODEL_CONFIGS["scheduler"](
num_train_timesteps=1000,
shift=MODEL_CONFIGS["shift"],
use_dynamic_shifting=False,
)
pipe = HiDreamImagePipeline.from_pretrained(
MODEL_PATH,
scheduler=scheduler,
tokenizer_4=tokenizer,
text_encoder_4=text_encoder,
torch_dtype=torch.bfloat16,
).to("cuda", torch.bfloat16)
pipe.transformer = transformer
@spaces.GPU(duration=90)
def generate_image(
prompt: str,
resolution: str,
seed: int,
) -> tuple[PIL.Image.Image, int]:
if seed == -1:
seed = torch.randint(0, 1_000_000, (1,)).item()
height, width = tuple(map(int, resolution.replace(" ", "").split("x")))
generator = torch.Generator("cuda").manual_seed(seed)
image = pipe(
prompt=prompt,
height=height,
width=width,
guidance_scale=MODEL_CONFIGS["guidance_scale"],
num_inference_steps=MODEL_CONFIGS["num_inference_steps"],
generator=generator,
).images[0]
torch.cuda.empty_cache()
return image, seed
# Gradio UI
with gr.Blocks(title="HiDream Image Generator") as demo:
gr.Markdown("## 🌈 HiDream Image Generator")
with gr.Row():
with gr.Column():
prompt = gr.Textbox(
label="Prompt",
placeholder="e.g. A futuristic city with floating cars at sunset",
lines=3,
)
resolution = gr.Radio(
choices=RESOLUTION_OPTIONS,
value=RESOLUTION_OPTIONS[0],
label="Resolution",
)
seed = gr.Number(label="Seed (-1 for random)", value=-1, precision=0)
generate_btn = gr.Button("Generate Image", variant="primary")
seed_used = gr.Number(label="Seed Used", interactive=False)
with gr.Column():
output_image = gr.Image(label="Generated Image", type="pil")
generate_btn.click(
fn=generate_image,
inputs=[prompt, resolution, seed],
outputs=[output_image, seed_used],
)
if __name__ == "__main__":
demo.launch()
|