File size: 4,407 Bytes
be01f5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8feabfd
 
be01f5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
    from typing import Any

    import gradio as gr
    import PIL
    import spaces
    import torch
    from hi_diffusers import HiDreamImagePipeline, HiDreamImageTransformer2DModel
    from hi_diffusers.schedulers.flash_flow_match import (
        FlashFlowMatchEulerDiscreteScheduler,
    )
    from transformers import LlamaForCausalLM, PreTrainedTokenizerFast, AutoTokenizer

    # Constants
    MODEL_PREFIX: str = "HiDream-ai"
    LLAMA_MODEL_NAME: str = "meta-llama/Meta-Llama-3.1-8B-Instruct"
    MODEL_PATH = "HiDream-ai/HiDream-I1-Dev"
    MODEL_CONFIGS: dict[str, Any] = {
        "guidance_scale": 0.0,
        "num_inference_steps": 28,
        "shift": 6.0,
        "scheduler": FlashFlowMatchEulerDiscreteScheduler,
    }

    # Model configurations
    # MODEL_CONFIGS: dict[str, dict] = {
    #     "full": {
    #         "path": f"{MODEL_PREFIX}/HiDream-I1-Full",
    #         "guidance_scale": 5.0,
    #         "num_inference_steps": 50,
    #         "shift": 3.0,
    #         "scheduler": FlowUniPCMultistepScheduler,
    #     },
    #     "fast": {
    #         "path": f"{MODEL_PREFIX}/HiDream-I1-Fast",
    #         "guidance_scale": 0.0,
    #         "num_inference_steps": 16,
    #         "shift": 3.0,
    #         "scheduler": FlashFlowMatchEulerDiscreteScheduler,
    #     },
    # }

    # Supported image sizes
    RESOLUTION_OPTIONS: list[str] = [
        "1024 x 1024 (Square)",
        "768 x 1360 (Portrait)",
        "1360 x 768 (Landscape)",
        "880 x 1168 (Portrait)",
        "1168 x 880 (Landscape)",
        "1248 x 832 (Landscape)",
        "832 x 1248 (Portrait)",
    ]


    tokenizer = AutoTokenizer.from_pretrained(LLAMA_MODEL_NAME, use_fast=False)
    text_encoder = LlamaForCausalLM.from_pretrained(
        LLAMA_MODEL_NAME,
        output_hidden_states=True,
        output_attentions=True,
        torch_dtype=torch.bfloat16,
    ).to("cuda")

    transformer = HiDreamImageTransformer2DModel.from_pretrained(
        MODEL_PATH,
        subfolder="transformer",
        torch_dtype=torch.bfloat16,
    ).to("cuda")

    scheduler = MODEL_CONFIGS["scheduler"](
        num_train_timesteps=1000,
        shift=MODEL_CONFIGS["shift"],
        use_dynamic_shifting=False,
    )

    pipe = HiDreamImagePipeline.from_pretrained(
        MODEL_PATH,
        scheduler=scheduler,
        tokenizer_4=tokenizer,
        text_encoder_4=text_encoder,
        torch_dtype=torch.bfloat16,
    ).to("cuda", torch.bfloat16)

    pipe.transformer = transformer


    @spaces.GPU(duration=90)
    def generate_image(
        prompt: str,
        resolution: str,
        seed: int,
    ) -> tuple[PIL.Image.Image, int]:
        if seed == -1:
            seed = torch.randint(0, 1_000_000, (1,)).item()

        height, width = tuple(map(int, resolution.replace(" ", "").split("x")))
        generator = torch.Generator("cuda").manual_seed(seed)

        image = pipe(
            prompt=prompt,
            height=height,
            width=width,
            guidance_scale=MODEL_CONFIGS["guidance_scale"],
            num_inference_steps=MODEL_CONFIGS["num_inference_steps"],
            generator=generator,
        ).images[0]

        torch.cuda.empty_cache()
        return image, seed


    # Gradio UI
    with gr.Blocks(title="HiDream Image Generator") as demo:
        gr.Markdown("## 🌈 HiDream Image Generator")

        with gr.Row():
            with gr.Column():
                prompt = gr.Textbox(
                    label="Prompt",
                    placeholder="e.g. A futuristic city with floating cars at sunset",
                    lines=3,
                )

                resolution = gr.Radio(
                    choices=RESOLUTION_OPTIONS,
                    value=RESOLUTION_OPTIONS[0],
                    label="Resolution",
                )

                seed = gr.Number(label="Seed (-1 for random)", value=-1, precision=0)
                generate_btn = gr.Button("Generate Image", variant="primary")
                seed_used = gr.Number(label="Seed Used", interactive=False)

            with gr.Column():
                output_image = gr.Image(label="Generated Image", type="pil")

        generate_btn.click(
            fn=generate_image,
            inputs=[prompt, resolution, seed],
            outputs=[output_image, seed_used],
        )

    if __name__ == "__main__":
        demo.launch()