File size: 18,515 Bytes
c8c12e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
"""MVTec AD Dataset (CC BY-NC-SA 4.0).

Description:
    This script contains PyTorch Dataset, Dataloader and PyTorch
        Lightning DataModule for the MVTec AD dataset.

    If the dataset is not on the file system, the script downloads and
        extracts the dataset and create PyTorch data objects.

License:
    MVTec AD dataset is released under the Creative Commons
    Attribution-NonCommercial-ShareAlike 4.0 International License
    (CC BY-NC-SA 4.0)(https://creativecommons.org/licenses/by-nc-sa/4.0/).

Reference:
    - Paul Bergmann, Kilian Batzner, Michael Fauser, David Sattlegger, Carsten Steger:
      The MVTec Anomaly Detection Dataset: A Comprehensive Real-World Dataset for
      Unsupervised Anomaly Detection; in: International Journal of Computer Vision
      129(4):1038-1059, 2021, DOI: 10.1007/s11263-020-01400-4.

    - Paul Bergmann, Michael Fauser, David Sattlegger, Carsten Steger: MVTec AD —
      A Comprehensive Real-World Dataset for Unsupervised Anomaly Detection;
      in: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
      9584-9592, 2019, DOI: 10.1109/CVPR.2019.00982.
"""

# Copyright (C) 2020 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions
# and limitations under the License.

import logging
import tarfile
from pathlib import Path
from typing import Dict, Optional, Tuple, Union
from urllib.request import urlretrieve

import albumentations as A
import cv2
import numpy as np
import pandas as pd
from pandas.core.frame import DataFrame
from pytorch_lightning.core.datamodule import LightningDataModule
from pytorch_lightning.utilities.types import EVAL_DATALOADERS, TRAIN_DATALOADERS
from torch import Tensor
from torch.utils.data import DataLoader
from torch.utils.data.dataset import Dataset
from torchvision.datasets.folder import VisionDataset

from anomalib.data.inference import InferenceDataset
from anomalib.data.utils import DownloadProgressBar, read_image
from anomalib.data.utils.split import (
    create_validation_set_from_test_set,
    split_normal_images_in_train_set,
)
from anomalib.pre_processing import PreProcessor

logger = logging.getLogger(__name__)


def make_mvtec_dataset(
    path: Path,
    split: Optional[str] = None,
    split_ratio: float = 0.1,
    seed: int = 0,
    create_validation_set: bool = False,
) -> DataFrame:
    """Create MVTec AD samples by parsing the MVTec AD data file structure.

    The files are expected to follow the structure:
        path/to/dataset/split/category/image_filename.png
        path/to/dataset/ground_truth/category/mask_filename.png

    This function creates a dataframe to store the parsed information based on the following format:
    |---|---------------|-------|---------|---------------|---------------------------------------|-------------|
    |   | path          | split | label   | image_path    | mask_path                             | label_index |
    |---|---------------|-------|---------|---------------|---------------------------------------|-------------|
    | 0 | datasets/name |  test |  defect |  filename.png | ground_truth/defect/filename_mask.png | 1           |
    |---|---------------|-------|---------|---------------|---------------------------------------|-------------|

    Args:
        path (Path): Path to dataset
        split (str, optional): Dataset split (ie., either train or test). Defaults to None.
        split_ratio (float, optional): Ratio to split normal training images and add to the
            test set in case test set doesn't contain any normal images.
            Defaults to 0.1.
        seed (int, optional): Random seed to ensure reproducibility when splitting. Defaults to 0.
        create_validation_set (bool, optional): Boolean to create a validation set from the test set.
            MVTec AD dataset does not contain a validation set. Those wanting to create a validation set
            could set this flag to ``True``.

    Example:
        The following example shows how to get training samples from MVTec AD bottle category:

        >>> root = Path('./MVTec')
        >>> category = 'bottle'
        >>> path = root / category
        >>> path
        PosixPath('MVTec/bottle')

        >>> samples = make_mvtec_dataset(path, split='train', split_ratio=0.1, seed=0)
        >>> samples.head()
           path         split label image_path                           mask_path                   label_index
        0  MVTec/bottle train good MVTec/bottle/train/good/105.png MVTec/bottle/ground_truth/good/105_mask.png 0
        1  MVTec/bottle train good MVTec/bottle/train/good/017.png MVTec/bottle/ground_truth/good/017_mask.png 0
        2  MVTec/bottle train good MVTec/bottle/train/good/137.png MVTec/bottle/ground_truth/good/137_mask.png 0
        3  MVTec/bottle train good MVTec/bottle/train/good/152.png MVTec/bottle/ground_truth/good/152_mask.png 0
        4  MVTec/bottle train good MVTec/bottle/train/good/109.png MVTec/bottle/ground_truth/good/109_mask.png 0

    Returns:
        DataFrame: an output dataframe containing samples for the requested split (ie., train or test)
    """
    samples_list = [(str(path),) + filename.parts[-3:] for filename in path.glob("**/*.png")]
    if len(samples_list) == 0:
        raise RuntimeError(f"Found 0 images in {path}")

    samples = pd.DataFrame(samples_list, columns=["path", "split", "label", "image_path"])
    samples = samples[samples.split != "ground_truth"]

    # Create mask_path column
    samples["mask_path"] = (
        samples.path
        + "/ground_truth/"
        + samples.label
        + "/"
        + samples.image_path.str.rstrip("png").str.rstrip(".")
        + "_mask.png"
    )

    # Modify image_path column by converting to absolute path
    samples["image_path"] = samples.path + "/" + samples.split + "/" + samples.label + "/" + samples.image_path

    # Split the normal images in training set if test set doesn't
    # contain any normal images. This is needed because AUC score
    # cannot be computed based on 1-class
    if sum((samples.split == "test") & (samples.label == "good")) == 0:
        samples = split_normal_images_in_train_set(samples, split_ratio, seed)

    # Good images don't have mask
    samples.loc[(samples.split == "test") & (samples.label == "good"), "mask_path"] = ""

    # Create label index for normal (0) and anomalous (1) images.
    samples.loc[(samples.label == "good"), "label_index"] = 0
    samples.loc[(samples.label != "good"), "label_index"] = 1
    samples.label_index = samples.label_index.astype(int)

    if create_validation_set:
        samples = create_validation_set_from_test_set(samples, seed=seed)

    # Get the data frame for the split.
    if split is not None and split in ["train", "val", "test"]:
        samples = samples[samples.split == split]
        samples = samples.reset_index(drop=True)

    return samples


class MVTec(VisionDataset):
    """MVTec AD PyTorch Dataset."""

    def __init__(
        self,
        root: Union[Path, str],
        category: str,
        pre_process: PreProcessor,
        split: str,
        task: str = "segmentation",
        seed: int = 0,
        create_validation_set: bool = False,
    ) -> None:
        """Mvtec AD Dataset class.

        Args:
            root: Path to the MVTec AD dataset
            category: Name of the MVTec AD category.
            pre_process: List of pre_processing object containing albumentation compose.
            split: 'train', 'val' or 'test'
            task: ``classification`` or ``segmentation``
            seed: seed used for the random subset splitting
            create_validation_set: Create a validation subset in addition to the train and test subsets

        Examples:
            >>> from anomalib.data.mvtec import MVTec
            >>> from anomalib.data.transforms import PreProcessor
            >>> pre_process = PreProcessor(image_size=256)
            >>> dataset = MVTec(
            ...     root='./datasets/MVTec',
            ...     category='leather',
            ...     pre_process=pre_process,
            ...     task="classification",
            ...     is_train=True,
            ... )
            >>> dataset[0].keys()
            dict_keys(['image'])

            >>> dataset.split = "test"
            >>> dataset[0].keys()
            dict_keys(['image', 'image_path', 'label'])

            >>> dataset.task = "segmentation"
            >>> dataset.split = "train"
            >>> dataset[0].keys()
            dict_keys(['image'])

            >>> dataset.split = "test"
            >>> dataset[0].keys()
            dict_keys(['image_path', 'label', 'mask_path', 'image', 'mask'])

            >>> dataset[0]["image"].shape, dataset[0]["mask"].shape
            (torch.Size([3, 256, 256]), torch.Size([256, 256]))
        """
        super().__init__(root)
        self.root = Path(root) if isinstance(root, str) else root
        self.category: str = category
        self.split = split
        self.task = task

        self.pre_process = pre_process

        self.samples = make_mvtec_dataset(
            path=self.root / category,
            split=self.split,
            seed=seed,
            create_validation_set=create_validation_set,
        )

    def __len__(self) -> int:
        """Get length of the dataset."""
        return len(self.samples)

    def __getitem__(self, index: int) -> Dict[str, Union[str, Tensor]]:
        """Get dataset item for the index ``index``.

        Args:
            index (int): Index to get the item.

        Returns:
            Union[Dict[str, Tensor], Dict[str, Union[str, Tensor]]]: Dict of image tensor during training.
                Otherwise, Dict containing image path, target path, image tensor, label and transformed bounding box.
        """
        item: Dict[str, Union[str, Tensor]] = {}

        image_path = self.samples.image_path[index]
        image = read_image(image_path)

        pre_processed = self.pre_process(image=image)
        item = {"image": pre_processed["image"]}

        if self.split in ["val", "test"]:
            label_index = self.samples.label_index[index]

            item["image_path"] = image_path
            item["label"] = label_index

            if self.task == "segmentation":
                mask_path = self.samples.mask_path[index]

                # Only Anomalous (1) images has masks in MVTec AD dataset.
                # Therefore, create empty mask for Normal (0) images.
                if label_index == 0:
                    mask = np.zeros(shape=image.shape[:2])
                else:
                    mask = cv2.imread(mask_path, flags=0) / 255.0

                pre_processed = self.pre_process(image=image, mask=mask)

                item["mask_path"] = mask_path
                item["image"] = pre_processed["image"]
                item["mask"] = pre_processed["mask"]

        return item


class MVTecDataModule(LightningDataModule):
    """MVTec AD Lightning Data Module."""

    def __init__(
        self,
        root: str,
        category: str,
        # TODO: Remove default values. IAAALD-211
        image_size: Optional[Union[int, Tuple[int, int]]] = None,
        train_batch_size: int = 32,
        test_batch_size: int = 32,
        num_workers: int = 8,
        task: str = "segmentation",
        transform_config_train: Optional[Union[str, A.Compose]] = None,
        transform_config_val: Optional[Union[str, A.Compose]] = None,
        seed: int = 0,
        create_validation_set: bool = False,
    ) -> None:
        """Mvtec AD Lightning Data Module.

        Args:
            root: Path to the MVTec AD dataset
            category: Name of the MVTec AD category.
            image_size: Variable to which image is resized.
            train_batch_size: Training batch size.
            test_batch_size: Testing batch size.
            num_workers: Number of workers.
            task: ``classification`` or ``segmentation``
            transform_config_train: Config for pre-processing during training.
            transform_config_val: Config for pre-processing during validation.
            seed: seed used for the random subset splitting
            create_validation_set: Create a validation subset in addition to the train and test subsets

        Examples
            >>> from anomalib.data import MVTecDataModule
            >>> datamodule = MVTecDataModule(
            ...     root="./datasets/MVTec",
            ...     category="leather",
            ...     image_size=256,
            ...     train_batch_size=32,
            ...     test_batch_size=32,
            ...     num_workers=8,
            ...     transform_config_train=None,
            ...     transform_config_val=None,
            ... )
            >>> datamodule.setup()

            >>> i, data = next(enumerate(datamodule.train_dataloader()))
            >>> data.keys()
            dict_keys(['image'])
            >>> data["image"].shape
            torch.Size([32, 3, 256, 256])

            >>> i, data = next(enumerate(datamodule.val_dataloader()))
            >>> data.keys()
            dict_keys(['image_path', 'label', 'mask_path', 'image', 'mask'])
            >>> data["image"].shape, data["mask"].shape
            (torch.Size([32, 3, 256, 256]), torch.Size([32, 256, 256]))
        """
        super().__init__()

        self.root = root if isinstance(root, Path) else Path(root)
        self.category = category
        self.dataset_path = self.root / self.category
        self.transform_config_train = transform_config_train
        self.transform_config_val = transform_config_val
        self.image_size = image_size

        if self.transform_config_train is not None and self.transform_config_val is None:
            self.transform_config_val = self.transform_config_train

        self.pre_process_train = PreProcessor(config=self.transform_config_train, image_size=self.image_size)
        self.pre_process_val = PreProcessor(config=self.transform_config_val, image_size=self.image_size)

        self.train_batch_size = train_batch_size
        self.test_batch_size = test_batch_size
        self.num_workers = num_workers

        self.create_validation_set = create_validation_set
        self.task = task
        self.seed = seed

        self.train_data: Dataset
        self.test_data: Dataset
        if create_validation_set:
            self.val_data: Dataset
        self.inference_data: Dataset

    def prepare_data(self) -> None:
        """Download the dataset if not available."""
        if (self.root / self.category).is_dir():
            logger.info("Found the dataset.")
        else:
            self.root.mkdir(parents=True, exist_ok=True)

            logger.info("Downloading the Mvtec AD dataset.")
            url = "https://www.mydrive.ch/shares/38536/3830184030e49fe74747669442f0f282/download/420938113-1629952094"
            dataset_name = "mvtec_anomaly_detection.tar.xz"
            with DownloadProgressBar(unit="B", unit_scale=True, miniters=1, desc="MVTec AD") as progress_bar:
                urlretrieve(
                    url=f"{url}/{dataset_name}",
                    filename=self.root / dataset_name,
                    reporthook=progress_bar.update_to,
                )

            logger.info("Extracting the dataset.")
            with tarfile.open(self.root / dataset_name) as tar_file:
                tar_file.extractall(self.root)

            logger.info("Cleaning the tar file")
            (self.root / dataset_name).unlink()

    def setup(self, stage: Optional[str] = None) -> None:
        """Setup train, validation and test data.

        Args:
          stage: Optional[str]:  Train/Val/Test stages. (Default value = None)

        """
        logger.info("Setting up train, validation, test and prediction datasets.")
        if stage in (None, "fit"):
            self.train_data = MVTec(
                root=self.root,
                category=self.category,
                pre_process=self.pre_process_train,
                split="train",
                task=self.task,
                seed=self.seed,
                create_validation_set=self.create_validation_set,
            )

        if self.create_validation_set:
            self.val_data = MVTec(
                root=self.root,
                category=self.category,
                pre_process=self.pre_process_val,
                split="val",
                task=self.task,
                seed=self.seed,
                create_validation_set=self.create_validation_set,
            )

        self.test_data = MVTec(
            root=self.root,
            category=self.category,
            pre_process=self.pre_process_val,
            split="test",
            task=self.task,
            seed=self.seed,
            create_validation_set=self.create_validation_set,
        )

        if stage == "predict":
            self.inference_data = InferenceDataset(
                path=self.root, image_size=self.image_size, transform_config=self.transform_config_val
            )

    def train_dataloader(self) -> TRAIN_DATALOADERS:
        """Get train dataloader."""
        return DataLoader(self.train_data, shuffle=True, batch_size=self.train_batch_size, num_workers=self.num_workers)

    def val_dataloader(self) -> EVAL_DATALOADERS:
        """Get validation dataloader."""
        dataset = self.val_data if self.create_validation_set else self.test_data
        return DataLoader(dataset=dataset, shuffle=False, batch_size=self.test_batch_size, num_workers=self.num_workers)

    def test_dataloader(self) -> EVAL_DATALOADERS:
        """Get test dataloader."""
        return DataLoader(self.test_data, shuffle=False, batch_size=self.test_batch_size, num_workers=self.num_workers)

    def predict_dataloader(self) -> EVAL_DATALOADERS:
        """Get predict dataloader."""
        return DataLoader(
            self.inference_data, shuffle=False, batch_size=self.test_batch_size, num_workers=self.num_workers
        )