Spaces:
Build error
Build error
File size: 3,426 Bytes
c8c12e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
"""DFM: Deep Feature Kernel Density Estimation."""
# Copyright (C) 2020 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions
# and limitations under the License.
import logging
from typing import List, Union
import torch
from omegaconf import DictConfig, ListConfig
from torch import Tensor
from anomalib.models.components import AnomalyModule
from .torch_model import DFMModel
logger = logging.getLogger(__name__)
class DfmLightning(AnomalyModule):
"""DFM: Deep Featured Kernel Density Estimation."""
def __init__(self, hparams: Union[DictConfig, ListConfig]):
super().__init__(hparams)
logger.info("Initializing DFKDE Lightning model.")
self.model: DFMModel = DFMModel(
backbone=hparams.model.backbone,
layer=hparams.model.layer,
pooling_kernel_size=hparams.model.pooling_kernel_size,
n_comps=hparams.model.pca_level,
score_type=hparams.model.score_type,
)
self.embeddings: List[Tensor] = []
@staticmethod
def configure_optimizers() -> None: # pylint: disable=arguments-differ
"""DFM doesn't require optimization, therefore returns no optimizers."""
return None
def training_step(self, batch, _): # pylint: disable=arguments-differ
"""Training Step of DFM.
For each batch, features are extracted from the CNN.
Args:
batch (Dict[str, Tensor]): Input batch
_: Index of the batch.
Returns:
Deep CNN features.
"""
embedding = self.model.get_features(batch["image"]).squeeze()
# NOTE: `self.embedding` appends each batch embedding to
# store the training set embedding. We manually append these
# values mainly due to the new order of hooks introduced after PL v1.4.0
# https://github.com/PyTorchLightning/pytorch-lightning/pull/7357
self.embeddings.append(embedding)
def on_validation_start(self) -> None:
"""Fit a PCA transformation and a Gaussian model to dataset."""
# NOTE: Previous anomalib versions fit Gaussian at the end of the epoch.
# This is not possible anymore with PyTorch Lightning v1.4.0 since validation
# is run within train epoch.
logger.info("Aggregating the embedding extracted from the training set.")
embeddings = torch.vstack(self.embeddings)
logger.info("Fitting a PCA and a Gaussian model to dataset.")
self.model.fit(embeddings)
def validation_step(self, batch, _): # pylint: disable=arguments-differ
"""Validation Step of DFM.
Similar to the training step, features are extracted from the CNN for each batch.
Args:
batch (List[Dict[str, Any]]): Input batch
Returns:
Dictionary containing FRE anomaly scores and ground-truth.
"""
batch["pred_scores"] = self.model(batch["image"])
return batch
|