File size: 6,951 Bytes
c8c12e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
"""GANomaly: Semi-Supervised Anomaly Detection via Adversarial Training.

https://arxiv.org/abs/1805.06725
"""

# Copyright (C) 2020 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions
# and limitations under the License.

import logging
from typing import Dict, List, Union

import torch
from omegaconf import DictConfig, ListConfig
from pytorch_lightning.callbacks import EarlyStopping
from torch import Tensor, optim

from anomalib.data.utils.image import pad_nextpow2
from anomalib.models.components import AnomalyModule

from .torch_model import GanomalyModel

logger = logging.getLogger(__name__)


class GanomalyLightning(AnomalyModule):
    """PL Lightning Module for the GANomaly Algorithm.

    Args:
        hparams (Union[DictConfig, ListConfig]): Model parameters
    """

    def __init__(self, hparams: Union[DictConfig, ListConfig]):
        super().__init__(hparams)
        logger.info("Initializing Ganomaly Lightning model.")

        self.model: GanomalyModel = GanomalyModel(
            input_size=hparams.model.input_size,
            num_input_channels=3,
            n_features=hparams.model.n_features,
            latent_vec_size=hparams.model.latent_vec_size,
            extra_layers=hparams.model.extra_layers,
            add_final_conv_layer=hparams.model.add_final_conv,
            wadv=self.hparams.model.wadv,
            wcon=self.hparams.model.wcon,
            wenc=self.hparams.model.wenc,
        )

        self.real_label = torch.ones(size=(self.hparams.dataset.train_batch_size,), dtype=torch.float32)
        self.fake_label = torch.zeros(size=(self.hparams.dataset.train_batch_size,), dtype=torch.float32)

        self.min_scores: Tensor = torch.tensor(float("inf"), dtype=torch.float32)  # pylint: disable=not-callable
        self.max_scores: Tensor = torch.tensor(float("-inf"), dtype=torch.float32)  # pylint: disable=not-callable

    def _reset_min_max(self):
        """Resets min_max scores."""
        self.min_scores = torch.tensor(float("inf"), dtype=torch.float32)  # pylint: disable=not-callable
        self.max_scores = torch.tensor(float("-inf"), dtype=torch.float32)  # pylint: disable=not-callable

    def configure_callbacks(self):
        """Configure model-specific callbacks."""
        early_stopping = EarlyStopping(
            monitor=self.hparams.model.early_stopping.metric,
            patience=self.hparams.model.early_stopping.patience,
            mode=self.hparams.model.early_stopping.mode,
        )
        return [early_stopping]

    def configure_optimizers(self) -> List[optim.Optimizer]:
        """Configure optimizers for generator and discriminator.

        Returns:
            List[optim.Optimizer]: Adam optimizers for discriminator and generator.
        """
        optimizer_d = optim.Adam(
            self.model.discriminator.parameters(),
            lr=self.hparams.model.lr,
            betas=(self.hparams.model.beta1, self.hparams.model.beta2),
        )
        optimizer_g = optim.Adam(
            self.model.generator.parameters(),
            lr=self.hparams.model.lr,
            betas=(self.hparams.model.beta1, self.hparams.model.beta2),
        )
        return [optimizer_d, optimizer_g]

    def training_step(self, batch, _, optimizer_idx):  # pylint: disable=arguments-differ
        """Training step.

        Args:
            batch (Dict): Input batch containing images.
            optimizer_idx (int): Optimizer which is being called for current training step.

        Returns:
            Dict[str, Tensor]: Loss
        """
        images = batch["image"]
        padded_images = pad_nextpow2(images)
        loss: Dict[str, Tensor]

        # Discriminator
        if optimizer_idx == 0:
            # forward pass
            loss_discriminator = self.model.get_discriminator_loss(padded_images)
            loss = {"loss": loss_discriminator}

        # Generator
        else:
            # forward pass
            loss_generator = self.model.get_generator_loss(padded_images)

            loss = {"loss": loss_generator}

        return loss

    def on_validation_start(self) -> None:
        """Reset min and max values for current validation epoch."""
        self._reset_min_max()
        return super().on_validation_start()

    def validation_step(self, batch, _) -> Dict[str, Tensor]:  # type: ignore # pylint: disable=arguments-differ
        """Update min and max scores from the current step.

        Args:
            batch (Dict[str, Tensor]): Predicted difference between z and z_hat.

        Returns:
            Dict[str, Tensor]: batch
        """
        batch["pred_scores"] = self.model(batch["image"])
        self.max_scores = max(self.max_scores, torch.max(batch["pred_scores"]))
        self.min_scores = min(self.min_scores, torch.min(batch["pred_scores"]))
        return batch

    def validation_epoch_end(self, outputs):
        """Normalize outputs based on min/max values."""
        logger.info("Normalizing validation outputs based on min/max values.")
        for prediction in outputs:
            prediction["pred_scores"] = self._normalize(prediction["pred_scores"])
        super().validation_epoch_end(outputs)
        return outputs

    def on_test_start(self) -> None:
        """Reset min max values before test batch starts."""
        self._reset_min_max()
        return super().on_test_start()

    def test_step(self, batch, _):
        """Update min and max scores from the current step."""
        super().test_step(batch, _)
        self.max_scores = max(self.max_scores, torch.max(batch["pred_scores"]))
        self.min_scores = min(self.min_scores, torch.min(batch["pred_scores"]))
        return batch

    def test_epoch_end(self, outputs):
        """Normalize outputs based on min/max values."""
        logger.info("Normalizing test outputs based on min/max values.")
        for prediction in outputs:
            prediction["pred_scores"] = self._normalize(prediction["pred_scores"])
        super().test_epoch_end(outputs)
        return outputs

    def _normalize(self, scores: Tensor) -> Tensor:
        """Normalize the scores based on min/max of entire dataset.

        Args:
            scores (Tensor): Un-normalized scores.

        Returns:
            Tensor: Normalized scores.
        """
        scores = (scores - self.min_scores.to(scores.device)) / (
            self.max_scores.to(scores.device) - self.min_scores.to(scores.device)
        )
        return scores