Spaces:
Build error
Build error
File size: 15,312 Bytes
c8c12e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 |
"""Image Tiler."""
# Copyright (C) 2020 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions
# and limitations under the License.
from itertools import product
from math import ceil
from typing import Optional, Sequence, Tuple, Union
import torch
import torchvision.transforms as T
from torch import Tensor
from torch.nn import functional as F
class StrideSizeError(Exception):
"""StrideSizeError to raise exception when stride size is greater than the tile size."""
def compute_new_image_size(image_size: Tuple, tile_size: Tuple, stride: Tuple) -> Tuple:
"""This function checks if image size is divisible by tile size and stride.
If not divisible, it resizes the image size to make it divisible.
Args:
image_size (Tuple): Original image size
tile_size (Tuple): Tile size
stride (Tuple): Stride
Examples:
>>> compute_new_image_size(image_size=(512, 512), tile_size=(256, 256), stride=(128, 128))
(512, 512)
>>> compute_new_image_size(image_size=(512, 512), tile_size=(222, 222), stride=(111, 111))
(555, 555)
Returns:
Tuple: Updated image size that is divisible by tile size and stride.
"""
def __compute_new_edge_size(edge_size: int, tile_size: int, stride: int) -> int:
"""This function makes the resizing within the edge level."""
if (edge_size - tile_size) % stride != 0:
edge_size = (ceil((edge_size - tile_size) / stride) * stride) + tile_size
return edge_size
resized_h = __compute_new_edge_size(image_size[0], tile_size[0], stride[0])
resized_w = __compute_new_edge_size(image_size[1], tile_size[1], stride[1])
return resized_h, resized_w
def upscale_image(image: Tensor, size: Tuple, mode: str = "padding") -> Tensor:
"""Upscale image to the desired size via either padding or interpolation.
Args:
image (Tensor): Image
size (Tuple): Tuple to which image is upscaled.
mode (str, optional): Upscaling mode. Defaults to "padding".
Examples:
>>> image = torch.rand(1, 3, 512, 512)
>>> image = upscale_image(image, size=(555, 555), mode="padding")
>>> image.shape
torch.Size([1, 3, 555, 555])
>>> image = torch.rand(1, 3, 512, 512)
>>> image = upscale_image(image, size=(555, 555), mode="interpolation")
>>> image.shape
torch.Size([1, 3, 555, 555])
Returns:
Tensor: Upscaled image.
"""
image_h, image_w = image.shape[2:]
resize_h, resize_w = size
if mode == "padding":
pad_h = resize_h - image_h
pad_w = resize_w - image_w
image = F.pad(image, [0, pad_w, 0, pad_h])
elif mode == "interpolation":
image = F.interpolate(input=image, size=(resize_h, resize_w))
else:
raise ValueError(f"Unknown mode {mode}. Only padding and interpolation is available.")
return image
def downscale_image(image: Tensor, size: Tuple, mode: str = "padding") -> Tensor:
"""Opposite of upscaling. This image downscales image to a desired size.
Args:
image (Tensor): Input image
size (Tuple): Size to which image is down scaled.
mode (str, optional): Downscaling mode. Defaults to "padding".
Examples:
>>> x = torch.rand(1, 3, 512, 512)
>>> y = upscale_image(image, upscale_size=(555, 555), mode="padding")
>>> y = downscale_image(y, size=(512, 512), mode='padding')
>>> torch.allclose(x, y)
True
Returns:
Tensor: Downscaled image
"""
input_h, input_w = size
if mode == "padding":
image = image[:, :, :input_h, :input_w]
else:
image = F.interpolate(input=image, size=(input_h, input_w))
return image
class Tiler:
"""Tile Image into (non)overlapping Patches. Images are tiled in order to efficiently process large images.
Args:
tile_size: Tile dimension for each patch
stride: Stride length between patches
remove_border_count: Number of border pixels to be removed from tile before untiling
mode: Upscaling mode for image resize.Supported formats: padding, interpolation
Examples:
>>> import torch
>>> from torchvision import transforms
>>> from skimage.data import camera
>>> tiler = Tiler(tile_size=256,stride=128)
>>> image = transforms.ToTensor()(camera())
>>> tiles = tiler.tile(image)
>>> image.shape, tiles.shape
(torch.Size([3, 512, 512]), torch.Size([9, 3, 256, 256]))
>>> # Perform your operations on the tiles.
>>> # Untile the patches to reconstruct the image
>>> reconstructed_image = tiler.untile(tiles)
>>> reconstructed_image.shape
torch.Size([1, 3, 512, 512])
"""
def __init__(
self,
tile_size: Union[int, Sequence],
stride: Union[int, Sequence],
remove_border_count: int = 0,
mode: str = "padding",
tile_count: int = 4,
) -> None:
self.tile_size_h, self.tile_size_w = self.__validate_size_type(tile_size)
self.tile_count = tile_count
self.stride_h, self.stride_w = self.__validate_size_type(stride)
self.remove_border_count = int(remove_border_count)
self.overlapping = not (self.stride_h == self.tile_size_h and self.stride_w == self.tile_size_w)
self.mode = mode
if self.stride_h > self.tile_size_h or self.stride_w > self.tile_size_w:
raise StrideSizeError(
"Larger stride size than kernel size produces unreliable tiling results. "
"Please ensure stride size is less than or equal than tiling size."
)
if self.mode not in ["padding", "interpolation"]:
raise ValueError(f"Unknown tiling mode {self.mode}. Available modes are padding and interpolation")
self.batch_size: int
self.num_channels: int
self.input_h: int
self.input_w: int
self.pad_h: int
self.pad_w: int
self.resized_h: int
self.resized_w: int
self.num_patches_h: int
self.num_patches_w: int
@staticmethod
def __validate_size_type(parameter: Union[int, Sequence]) -> Tuple[int, ...]:
if isinstance(parameter, int):
output = (parameter, parameter)
elif isinstance(parameter, Sequence):
output = (parameter[0], parameter[1])
else:
raise ValueError(f"Unknown type {type(parameter)} for tile or stride size. Could be int or Sequence type.")
if len(output) != 2:
raise ValueError(f"Length of the size type must be 2 for height and width. Got {len(output)} instead.")
return output
def __random_tile(self, image: Tensor) -> Tensor:
"""Randomly crop tiles from the given image.
Args:
image: input image to be cropped
Returns: Randomly cropped tiles from the image
"""
return torch.vstack([T.RandomCrop(self.tile_size_h)(image) for i in range(self.tile_count)])
def __unfold(self, tensor: Tensor) -> Tensor:
"""Unfolds tensor into tiles.
This is the core function to perform tiling operation.
Args:
tensor: Input tensor from which tiles are generated.
Returns: Generated tiles
"""
# identify device type based on input tensor
device = tensor.device
# extract and calculate parameters
batch, channels, image_h, image_w = tensor.shape
self.num_patches_h = int((image_h - self.tile_size_h) / self.stride_h) + 1
self.num_patches_w = int((image_w - self.tile_size_w) / self.stride_w) + 1
# create an empty torch tensor for output
tiles = torch.zeros(
(self.num_patches_h, self.num_patches_w, batch, channels, self.tile_size_h, self.tile_size_w), device=device
)
# fill-in output tensor with spatial patches extracted from the image
for (tile_i, tile_j), (loc_i, loc_j) in zip(
product(range(self.num_patches_h), range(self.num_patches_w)),
product(
range(0, image_h - self.tile_size_h + 1, self.stride_h),
range(0, image_w - self.tile_size_w + 1, self.stride_w),
),
):
tiles[tile_i, tile_j, :] = tensor[
:, :, loc_i : (loc_i + self.tile_size_h), loc_j : (loc_j + self.tile_size_w)
]
# rearrange the tiles in order [tile_count * batch, channels, tile_height, tile_width]
tiles = tiles.permute(2, 0, 1, 3, 4, 5)
tiles = tiles.contiguous().view(-1, channels, self.tile_size_h, self.tile_size_w)
return tiles
def __fold(self, tiles: Tensor) -> Tensor:
"""Fold the tiles back into the original tensor.
This is the core method to reconstruct the original image from its tiled version.
Args:
tiles: Tiles from the input image, generated via __unfold method.
Returns:
Output that is the reconstructed version of the input tensor.
"""
# number of channels differs between image and anomaly map, so infer from input tiles.
_, num_channels, tile_size_h, tile_size_w = tiles.shape
scale_h, scale_w = (tile_size_h / self.tile_size_h), (tile_size_w / self.tile_size_w)
# identify device type based on input tensor
device = tiles.device
# calculate tile size after borders removed
reduced_tile_h = tile_size_h - (2 * self.remove_border_count)
reduced_tile_w = tile_size_w - (2 * self.remove_border_count)
# reconstructed image dimension
image_size = (self.batch_size, num_channels, int(self.resized_h * scale_h), int(self.resized_w * scale_w))
# rearrange input tiles in format [tile_count, batch, channel, tile_h, tile_w]
tiles = tiles.contiguous().view(
self.batch_size,
self.num_patches_h,
self.num_patches_w,
num_channels,
tile_size_h,
tile_size_w,
)
tiles = tiles.permute(0, 3, 1, 2, 4, 5)
tiles = tiles.contiguous().view(self.batch_size, num_channels, -1, tile_size_h, tile_size_w)
tiles = tiles.permute(2, 0, 1, 3, 4)
# remove tile borders by defined count
tiles = tiles[
:,
:,
:,
self.remove_border_count : reduced_tile_h + self.remove_border_count,
self.remove_border_count : reduced_tile_w + self.remove_border_count,
]
# create tensors to store intermediate results and outputs
img = torch.zeros(image_size, device=device)
lookup = torch.zeros(image_size, device=device)
ones = torch.ones(reduced_tile_h, reduced_tile_w, device=device)
# reconstruct image by adding patches to their respective location and
# create a lookup for patch count in every location
for patch, (loc_i, loc_j) in zip(
tiles,
product(
range(
self.remove_border_count,
int(self.resized_h * scale_h) - reduced_tile_h + 1,
int(self.stride_h * scale_h),
),
range(
self.remove_border_count,
int(self.resized_w * scale_w) - reduced_tile_w + 1,
int(self.stride_w * scale_w),
),
),
):
img[:, :, loc_i : (loc_i + reduced_tile_h), loc_j : (loc_j + reduced_tile_w)] += patch
lookup[:, :, loc_i : (loc_i + reduced_tile_h), loc_j : (loc_j + reduced_tile_w)] += ones
# divide the reconstucted image by the lookup to average out the values
img = torch.divide(img, lookup)
# alternative way of removing nan values (isnan not supported by openvino)
img[img != img] = 0 # pylint: disable=comparison-with-itself
return img
def tile(self, image: Tensor, use_random_tiling: Optional[bool] = False) -> Tensor:
"""Tiles an input image to either overlapping, non-overlapping or random patches.
Args:
image: Input image to tile.
Examples:
>>> from anomalib.data.tiler import Tiler
>>> tiler = Tiler(tile_size=512,stride=256)
>>> image = torch.rand(size=(2, 3, 1024, 1024))
>>> image.shape
torch.Size([2, 3, 1024, 1024])
>>> tiles = tiler.tile(image)
>>> tiles.shape
torch.Size([18, 3, 512, 512])
Returns:
Tiles generated from the image.
"""
if image.dim() == 3:
image = image.unsqueeze(0)
self.batch_size, self.num_channels, self.input_h, self.input_w = image.shape
if self.input_h < self.tile_size_h or self.input_w < self.tile_size_w:
raise ValueError(
f"One of the edges of the tile size {self.tile_size_h, self.tile_size_w} "
"is larger than that of the image {self.input_h, self.input_w}."
)
self.resized_h, self.resized_w = compute_new_image_size(
image_size=(self.input_h, self.input_w),
tile_size=(self.tile_size_h, self.tile_size_w),
stride=(self.stride_h, self.stride_w),
)
image = upscale_image(image, size=(self.resized_h, self.resized_w), mode=self.mode)
if use_random_tiling:
image_tiles = self.__random_tile(image)
else:
image_tiles = self.__unfold(image)
return image_tiles
def untile(self, tiles: Tensor) -> Tensor:
"""Untiles patches to reconstruct the original input image.
If patches, are overlapping patches, the function averages the overlapping pixels,
and return the reconstructed image.
Args:
tiles: Tiles from the input image, generated via tile()..
Examples:
>>> from anomalib.datasets.tiler import Tiler
>>> tiler = Tiler(tile_size=512,stride=256)
>>> image = torch.rand(size=(2, 3, 1024, 1024))
>>> image.shape
torch.Size([2, 3, 1024, 1024])
>>> tiles = tiler.tile(image)
>>> tiles.shape
torch.Size([18, 3, 512, 512])
>>> reconstructed_image = tiler.untile(tiles)
>>> reconstructed_image.shape
torch.Size([2, 3, 1024, 1024])
>>> torch.equal(image, reconstructed_image)
True
Returns:
Output that is the reconstructed version of the input tensor.
"""
image = self.__fold(tiles)
image = downscale_image(image=image, size=(self.input_h, self.input_w), mode=self.mode)
return image
|