File size: 4,598 Bytes
c8c12e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
"""wandb logger with add image interface."""

# Copyright (C) 2020 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions
# and limitations under the License.

from typing import Any, List, Optional, Union

import numpy as np
from matplotlib.figure import Figure
from pytorch_lightning.loggers.wandb import WandbLogger
from pytorch_lightning.utilities import rank_zero_only

import wandb

from .base import ImageLoggerBase


class AnomalibWandbLogger(ImageLoggerBase, WandbLogger):
    """Logger for wandb.

    Adds interface for `add_image` in the logger rather than calling the experiment object.

    Note:
        Same as the wandb Logger provided by PyTorch Lightning and the doc string is reproduced below.

    Log using `Weights and Biases <https://www.wandb.com/>`_.

    Install it with pip:

    .. code-block:: bash

        $ pip install wandb

    Args:
        name: Display name for the run.
        save_dir: Path where data is saved (wandb dir by default).
        offline: Run offline (data can be streamed later to wandb servers).
        id: Sets the version, mainly used to resume a previous run.
        version: Same as id.
        anonymous: Enables or explicitly disables anonymous logging.
        project: The name of the project to which this run will belong.
        log_model: Save checkpoints in wandb dir to upload on W&B servers.
        prefix: A string to put at the beginning of metric keys.
        experiment: WandB experiment object. Automatically set when creating a run.
        **kwargs: Arguments passed to :func:`wandb.init` like `entity`, `group`, `tags`, etc.

    Raises:
        ImportError:
            If required WandB package is not installed on the device.
        MisconfigurationException:
            If both ``log_model`` and ``offline``is set to ``True``.

    Example:
        >>> from anomalib.utils.loggers import AnomalibWandbLogger
        >>> from pytorch_lightning import Trainer
        >>> wandb_logger = AnomalibWandbLogger()
        >>> trainer = Trainer(logger=wandb_logger)

    Note: When logging manually through `wandb.log` or `trainer.logger.experiment.log`,
    make sure to use `commit=False` so the logging step does not increase.

    See Also:
        - `Tutorial <https://colab.research.google.com/drive/16d1uctGaw2y9KhGBlINNTsWpmlXdJwRW?usp=sharing>`__
          on how to use W&B with PyTorch Lightning
        - `W&B Documentation <https://docs.wandb.ai/integrations/lightning>`__

    """

    def __init__(
        self,
        name: Optional[str] = None,
        save_dir: Optional[str] = None,
        offline: Optional[bool] = False,
        id: Optional[str] = None,  # kept to match wandb init pylint: disable=redefined-builtin
        anonymous: Optional[bool] = None,
        version: Optional[str] = None,
        project: Optional[str] = None,
        log_model: Union[str, bool] = False,
        experiment=None,
        prefix: Optional[str] = "",
        **kwargs
    ) -> None:
        super().__init__(
            name=name,
            save_dir=save_dir,
            offline=offline,
            id=id,
            anonymous=anonymous,
            version=version,
            project=project,
            log_model=log_model,
            experiment=experiment,
            prefix=prefix,
            **kwargs
        )
        self.image_list: List[wandb.Image] = []  # Cache images

    @rank_zero_only
    def add_image(self, image: Union[np.ndarray, Figure], name: Optional[str] = None, **kwargs: Any):
        """Interface to add image to wandb logger.

        Args:
            image (Union[np.ndarray, Figure]): Image to log
            name (Optional[str]): The tag of the image
        """
        image = wandb.Image(image, caption=name)
        self.image_list.append(image)

    @rank_zero_only
    def save(self) -> None:
        """Upload images to wandb server.

        Note:
            There is a limit on the number of images that can be logged together to the `wandb` server.
        """
        super().save()
        if len(self.image_list) > 1:
            wandb.log({"Predictions": self.image_list})