File size: 7,898 Bytes
c8c12e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
from typing import List, Tuple

import numpy as np
from skimage.draw import polygon


def random_square_patch(input_region: List[int], min_width: int = 10) -> List[int]:
    """Gets a random patch in the input region.

    Args:
        input_region (List[int]): Coordinates of the input region. [x1, y1, x2, y2]
        min_width (int): Minimum width of the returned patch.
    Example:
    >>> image = np.zeros((200,200,3))
    >>> x1, y1, x2, y2 = random_square_patch([100,100,200,200])
    >>> patched = image.copy()
    >>> patched[y1:y2, x1:x2, :] = 1
    >>> plt.imshow(patched)

    Returns:
        List[int]: Random square patch [x1, y1, x2, y2]
    """
    x1_i, y1_i, x2_i, y2_i = input_region
    cx, cy = np.random.randint(x1_i, x2_i), np.random.randint(y1_i, y2_i)
    shortest_dim = min(x2_i - x1_i, y2_i - y1_i)
    # make sure that shortest_dim is larger than min_width
    shortest_dim = max(shortest_dim, min_width + 1)
    rand_half_width = np.random.randint(min_width, shortest_dim) // 2
    x1, y1, x2, y2 = cx - rand_half_width, cy - rand_half_width, cx + rand_half_width, cy + rand_half_width

    # border check
    if x1 < 0:
        x1 = 0
        x2 = 2 * rand_half_width
    elif x2 > x2_i:
        x2 = x2_i
        x1 = x2_i - 2 * rand_half_width

    if y1 < 0:
        y1 = 0
        y2 = 2 * rand_half_width
    elif y2 > y2_i:
        y2 = y2_i
        y1 = y2_i - 2 * rand_half_width

    return [x1, y1, x2, y2]


def triangle(input_region: List[int]) -> Tuple[List[int], List[int]]:
    """Get coordinates of points inside a triangle.

    Args:
        input_region (List[int]): Region in which to draw the triangle. [x1, y1, x2, y2]
    Example:
    >>> image = np.full((200,200,3),fill_value=255, dtype=np.uint8)
    >>> patch_region = random_square_patch([100, 100, 200, 200])
    >>> xx, yy = triangle(patch_region)
    >>> patched = image.copy()
    >>> patched[yy, xx, :] = 1
    >>> plt.imshow(patched)
    Returns:
        Tuple[List[int], List[int]]: Array of cols and rows which denote the mask.
    """
    x1_i, y1_i, x2_i, y2_i = input_region

    x1, y1 = x1_i + (x2_i - x1_i) // 2, y1_i
    x2, y2 = x1_i, y2_i
    x3, y3 = x2_i, y2_i
    return polygon([x1, x2, x3], [y1, y2, y3])


def rectangle(input_region: List[int], min_side: int = 10) -> Tuple[List[int], List[int]]:
    """Get coordinates of corners of a rectangle. Only vertical rectangles are
    generated.

    Args:
        input_region (List[int]): Region in which to draw the rectangle. [x1, y1, x2, y2]
        min_side (int, optional): Minimum side of the rectangle. Defaults to 10.
    Example:
    >>> image = np.full((200,200,3),fill_value=255, dtype=np.uint8)
    >>> patch_region = random_square_patch([100, 100, 200, 200])
    >>> x1, y1, x2, y2 = rectangle(patch_region)
    >>> patched = image.copy()
    >>> patched[y1:y2, x1:x2, :] = 1
    >>> plt.imshow(patched)
    Returns:
        Tuple[List[int], List[int]]: Random rectangle region. [x1, y1, x2, y2]
    """
    x1_i, y1, x2_i, y2 = input_region
    shortest_dim = min(x2_i - x1_i, y2 - y1)
    # make sure that shortest_dim is larger than min_side
    shortest_dim = max(shortest_dim, min_side + 1)
    cx = (x2_i - x1_i) // 2
    rand_half_width = np.random.randint(min_side, shortest_dim) // 2
    x1 = cx - rand_half_width
    x2 = cx + rand_half_width

    xs = np.arange(x1, x2, 1)
    ys = np.arange(y1, y2, 1)

    yy, xx = np.meshgrid(ys, xs, sparse=True)

    return xx, yy


def hexagon(input_region: List[int]) -> Tuple[List[int], List[int]]:
    """Get coordinates of points inside a hexagon.

    Args:
        input_region (List[int]): Region in which to draw the hexagon. [x1, y1, x2, y2]
    Example:
    >>> image = np.full((200,200,3),fill_value=255, dtype=np.uint8)
    >>> patch_region = random_square_patch([100, 100, 200, 200])
    >>> xx, yy = hexagon(patch_region)
    >>> patched = image.copy()
    >>> patched[yy, xx, :] = 1
    >>> plt.imshow(patched)
    Returns:
        Tuple[List[int], List[int]]: Array of cols and rows which denote the mask.
    """
    x1_i, y1_i, x2_i, _ = input_region

    cx = (x2_i - x1_i) // 2
    hex_half_side = (x2_i - x1_i) // 4  # assume side of hexagon to be 1/2 of the square size

    x1, y1 = x1_i + hex_half_side, y1_i
    x2, y2 = x1_i + cx + hex_half_side, y1_i
    x3, y3 = x2_i, y1_i + int(1.732 * hex_half_side)  # 2cos(30)
    x4, y4 = x1_i + cx + hex_half_side, y1_i + int(3.4641 * hex_half_side)  # 4 * cos(30)
    x5, y5 = x1_i + hex_half_side, y1_i + int(3.4641 * hex_half_side)  # 4 * cos(30)
    x6, y6 = x1_i, y1_i + int(1.732 * hex_half_side)
    return polygon([x1, x2, x3, x4, x5, x6], [y1, y2, y3, y4, y5, y6])


def star(input_region: List[int]) -> Tuple[List[int], List[int]]:
    """Get coordinates of points inside a star.

    Args:
        input_region (List[int]): Region in which to draw the star. [x1, y1, x2, y2]
    Example:
    >>> image = np.full((200,200,3),fill_value=255, dtype=np.uint8)
    >>> patch_region = random_square_patch([100, 100, 200, 200])
    >>> xx, yy = star(patch_region)
    >>> patched = image.copy()
    >>> patched[yy, xx, :] = 1
    >>> plt.imshow(patched)
    Returns:
        Tuple[List[int], List[int]]: Array of cols and rows which denote the mask.
    """
    x1_i, y1_i, x2_i, y2_i = input_region

    outer_dim = (x2_i - x1_i) // 2
    inner_dim = (x2_i - x1_i) // 4

    cx = x1_i + (x2_i - x1_i) // 2
    cy = y1_i + (y2_i - y1_i) // 2
    x1, y1 = cx + int(outer_dim * np.cos(0.314159)), cy + int(outer_dim * np.sin(0.314159))
    x2, y2 = cx + int(inner_dim * np.cos(0.942478)), cy + int(inner_dim * np.sin(0.942478))

    x3, y3 = cx + int(outer_dim * np.cos(1.5708)), cy + int(outer_dim * np.sin(1.5708))
    x4, y4 = cx + int(inner_dim * np.cos(2.19911)), cy + int(inner_dim * np.sin(2.19911))

    x5, y5 = cx + int(outer_dim * np.cos(2.82743)), cy + int(outer_dim * np.sin(2.82743))
    x6, y6 = cx + int(inner_dim * np.cos(3.45575)), cy + int(inner_dim * np.sin(3.45575))

    x7, y7 = cx + int(outer_dim * np.cos(4.08407)), cy + int(outer_dim * np.sin(4.08407))
    x8, y8 = cx, cy - inner_dim

    x9, y9 = cx + int(outer_dim * np.cos(5.34071)), cy + int(outer_dim * np.sin(5.34071))
    x10, y10 = cx + int(inner_dim * np.cos(5.96903)), cy + int(inner_dim * np.sin(5.96903))
    print([x1, x2, x3, x4, x5, x6, x7, x8, x9, x10], [y1, y2, y3, y4, y5, y6, y7, y8, y9, y10])

    return polygon([x1, x2, x3, x4, x5, x6, x7, x8, x9, x10], [y1, y2, y3, y4, y5, y6, y7, y8, y9, y10])


def random_shapes(
    input_region: List[int], size: Tuple[int, int], max_shapes: int, shape: str = "rectangle"
) -> np.ndarray:
    """Generate image with random shape.

    Args:
        input_region (List[int]): Coordinates of the input region. [x1, y1, x2, y2]
        size (Tuple[int, int]): Size of the input image
        max_shapes (int): Maximum number of shapes of a certain kind to draw
        shape (str): Name of the shape. Defaults to rectangle
    Returns:
        np.ndarray: Image containing the shape
    """
    shape_fn: Tuple[List[int], List[int]]
    if shape == "rectangle":
        shape_fn = rectangle
    elif shape == "triangle":
        shape_fn = triangle
    elif shape == "hexagon":
        shape_fn = hexagon
    elif shape == "star":
        shape_fn = star
    else:
        raise ValueError(f"Shape function {shape} not supported!")

    shape_image: np.ndarray = np.full((*size, 3), fill_value=255, dtype=np.uint8)
    for _ in range(max_shapes):
        image = np.full((*size, 3), fill_value=255, dtype=np.uint8)
        patch_region = random_square_patch(input_region)
        xx, yy = shape_fn(patch_region)
        # assign random colour
        image[yy, xx, :] = (np.random.randint(0, 255), np.random.randint(0, 255), np.random.randint(0, 255))
        shape_image = np.minimum(image, shape_image)  # since 255 is max

    return shape_image