Spaces:
Build error
Build error
"""Anomaly Map Generator for CFlow model implementation.""" | |
# Copyright (C) 2020 Intel Corporation | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, | |
# software distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions | |
# and limitations under the License. | |
from typing import List, Tuple, Union, cast | |
import torch | |
import torch.nn.functional as F | |
from omegaconf import ListConfig | |
from torch import Tensor | |
class AnomalyMapGenerator: | |
"""Generate Anomaly Heatmap.""" | |
def __init__( | |
self, | |
image_size: Union[ListConfig, Tuple], | |
pool_layers: List[str], | |
): | |
self.distance = torch.nn.PairwiseDistance(p=2, keepdim=True) | |
self.image_size = image_size if isinstance(image_size, tuple) else tuple(image_size) | |
self.pool_layers: List[str] = pool_layers | |
def compute_anomaly_map( | |
self, distribution: Union[List[Tensor], List[List]], height: List[int], width: List[int] | |
) -> Tensor: | |
"""Compute the layer map based on likelihood estimation. | |
Args: | |
distribution: Probability distribution for each decoder block | |
height: blocks height | |
width: blocks width | |
Returns: | |
Final Anomaly Map | |
""" | |
test_map: List[Tensor] = [] | |
for layer_idx in range(len(self.pool_layers)): | |
test_norm = torch.tensor(distribution[layer_idx], dtype=torch.double) # pylint: disable=not-callable | |
test_norm -= torch.max(test_norm) # normalize likelihoods to (-Inf:0] by subtracting a constant | |
test_prob = torch.exp(test_norm) # convert to probs in range [0:1] | |
test_mask = test_prob.reshape(-1, height[layer_idx], width[layer_idx]) | |
# upsample | |
test_map.append( | |
F.interpolate( | |
test_mask.unsqueeze(1), size=self.image_size, mode="bilinear", align_corners=True | |
).squeeze() | |
) | |
# score aggregation | |
score_map = torch.zeros_like(test_map[0]) | |
for layer_idx in range(len(self.pool_layers)): | |
score_map += test_map[layer_idx] | |
score_mask = score_map | |
# invert probs to anomaly scores | |
anomaly_map = score_mask.max() - score_mask | |
return anomaly_map | |
def __call__(self, **kwargs: Union[List[Tensor], List[int], List[List]]) -> Tensor: | |
"""Returns anomaly_map. | |
Expects `distribution`, `height` and 'width' keywords to be passed explicitly | |
Example | |
>>> anomaly_map_generator = AnomalyMapGenerator(image_size=tuple(hparams.model.input_size), | |
>>> pool_layers=pool_layers) | |
>>> output = self.anomaly_map_generator(distribution=dist, height=height, width=width) | |
Raises: | |
ValueError: `distribution`, `height` and 'width' keys are not found | |
Returns: | |
torch.Tensor: anomaly map | |
""" | |
if not ("distribution" in kwargs and "height" in kwargs and "width" in kwargs): | |
raise KeyError(f"Expected keys `distribution`, `height` and `width`. Found {kwargs.keys()}") | |
# placate mypy | |
distribution: List[Tensor] = cast(List[Tensor], kwargs["distribution"]) | |
height: List[int] = cast(List[int], kwargs["height"]) | |
width: List[int] = cast(List[int], kwargs["width"]) | |
return self.compute_anomaly_map(distribution, height, width) | |