Spaces:
Build error
Build error
"""Helper functions for CFlow implementation.""" | |
# Copyright (C) 2020 Intel Corporation | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, | |
# software distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions | |
# and limitations under the License. | |
import logging | |
import math | |
import numpy as np | |
import torch | |
from torch import nn | |
from anomalib.models.components.freia.framework import SequenceINN | |
from anomalib.models.components.freia.modules import AllInOneBlock | |
logger = logging.getLogger(__name__) | |
def get_logp(dim_feature_vector: int, p_u: torch.Tensor, logdet_j: torch.Tensor) -> torch.Tensor: | |
"""Returns the log likelihood estimation. | |
Args: | |
dim_feature_vector (int): Dimensions of the condition vector | |
p_u (torch.Tensor): Random variable u | |
logdet_j (torch.Tensor): log of determinant of jacobian returned from the invertable decoder | |
Returns: | |
torch.Tensor: Log probability | |
""" | |
ln_sqrt_2pi = -np.log(np.sqrt(2 * np.pi)) # ln(sqrt(2*pi)) | |
logp = dim_feature_vector * ln_sqrt_2pi - 0.5 * torch.sum(p_u**2, 1) + logdet_j | |
return logp | |
def positional_encoding_2d(condition_vector: int, height: int, width: int) -> torch.Tensor: | |
"""Creates embedding to store relative position of the feature vector using sine and cosine functions. | |
Args: | |
condition_vector (int): Length of the condition vector | |
height (int): H of the positions | |
width (int): W of the positions | |
Raises: | |
ValueError: Cannot generate encoding with conditional vector length not as multiple of 4 | |
Returns: | |
torch.Tensor: condition_vector x HEIGHT x WIDTH position matrix | |
""" | |
if condition_vector % 4 != 0: | |
raise ValueError(f"Cannot use sin/cos positional encoding with odd dimension (got dim={condition_vector})") | |
pos_encoding = torch.zeros(condition_vector, height, width) | |
# Each dimension use half of condition_vector | |
condition_vector = condition_vector // 2 | |
div_term = torch.exp(torch.arange(0.0, condition_vector, 2) * -(math.log(1e4) / condition_vector)) | |
pos_w = torch.arange(0.0, width).unsqueeze(1) | |
pos_h = torch.arange(0.0, height).unsqueeze(1) | |
pos_encoding[0:condition_vector:2, :, :] = ( | |
torch.sin(pos_w * div_term).transpose(0, 1).unsqueeze(1).repeat(1, height, 1) | |
) | |
pos_encoding[1:condition_vector:2, :, :] = ( | |
torch.cos(pos_w * div_term).transpose(0, 1).unsqueeze(1).repeat(1, height, 1) | |
) | |
pos_encoding[condition_vector::2, :, :] = ( | |
torch.sin(pos_h * div_term).transpose(0, 1).unsqueeze(2).repeat(1, 1, width) | |
) | |
pos_encoding[condition_vector + 1 :: 2, :, :] = ( | |
torch.cos(pos_h * div_term).transpose(0, 1).unsqueeze(2).repeat(1, 1, width) | |
) | |
return pos_encoding | |
def subnet_fc(dims_in: int, dims_out: int): | |
"""Subnetwork which predicts the affine coefficients. | |
Args: | |
dims_in (int): input dimensions | |
dims_out (int): output dimensions | |
Returns: | |
nn.Sequential: Feed-forward subnetwork | |
""" | |
return nn.Sequential(nn.Linear(dims_in, 2 * dims_in), nn.ReLU(), nn.Linear(2 * dims_in, dims_out)) | |
def cflow_head( | |
condition_vector: int, coupling_blocks: int, clamp_alpha: float, n_features: int, permute_soft: bool = False | |
) -> SequenceINN: | |
"""Create invertible decoder network. | |
Args: | |
condition_vector (int): length of the condition vector | |
coupling_blocks (int): number of coupling blocks to build the decoder | |
clamp_alpha (float): clamping value to avoid exploding values | |
n_features (int): number of decoder features | |
permute_soft (bool): Whether to sample the permutation matrix :math:`R` from :math:`SO(N)`, | |
or to use hard permutations instead. Note, ``permute_soft=True`` is very slow | |
when working with >512 dimensions. | |
Returns: | |
SequenceINN: decoder network block | |
""" | |
coder = SequenceINN(n_features) | |
logger.info("CNF coder: %d", n_features) | |
for _ in range(coupling_blocks): | |
coder.append( | |
AllInOneBlock, | |
cond=0, | |
cond_shape=(condition_vector,), | |
subnet_constructor=subnet_fc, | |
affine_clamping=clamp_alpha, | |
global_affine_type="SOFTPLUS", | |
permute_soft=permute_soft, | |
) | |
return coder | |