Spaces:
Build error
Build error
"""Dynamic Buffer Module.""" | |
# Copyright (C) 2020 Intel Corporation | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, | |
# software distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions | |
# and limitations under the License. | |
from abc import ABC | |
from torch import Tensor, nn | |
class DynamicBufferModule(ABC, nn.Module): | |
"""Torch module that allows loading variables from the state dict even in the case of shape mismatch.""" | |
def get_tensor_attribute(self, attribute_name: str) -> Tensor: | |
"""Get attribute of the tensor given the name. | |
Args: | |
attribute_name (str): Name of the tensor | |
Raises: | |
ValueError: `attribute_name` is not a torch Tensor | |
Returns: | |
Tensor: Tensor attribute | |
""" | |
attribute = self.__getattr__(attribute_name) | |
if isinstance(attribute, Tensor): | |
return attribute | |
raise ValueError(f"Attribute with name '{attribute_name}' is not a torch Tensor") | |
def _load_from_state_dict(self, state_dict: dict, prefix: str, *args): | |
"""Resizes the local buffers to match those stored in the state dict. | |
Overrides method from parent class. | |
Args: | |
state_dict (dict): State dictionary containing weights | |
prefix (str): Prefix of the weight file. | |
*args: | |
""" | |
persistent_buffers = {k: v for k, v in self._buffers.items() if k not in self._non_persistent_buffers_set} | |
local_buffers = {k: v for k, v in persistent_buffers.items() if v is not None} | |
for param in local_buffers.keys(): | |
for key in state_dict.keys(): | |
if key.startswith(prefix) and key[len(prefix) :].split(".")[0] == param: | |
if not local_buffers[param].shape == state_dict[key].shape: | |
attribute = self.get_tensor_attribute(param) | |
attribute.resize_(state_dict[key].shape) | |
super()._load_from_state_dict(state_dict, prefix, *args) | |