Spaces:
Build error
Build error
"""STFPM: Student-Teacher Feature Pyramid Matching for Unsupervised Anomaly Detection. | |
https://arxiv.org/abs/2103.04257 | |
""" | |
# Copyright (C) 2020 Intel Corporation | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, | |
# software distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions | |
# and limitations under the License. | |
import logging | |
import torch | |
from pytorch_lightning.callbacks import EarlyStopping | |
from torch import optim | |
from anomalib.models.components import AnomalyModule | |
from anomalib.models.stfpm.torch_model import STFPMModel | |
logger = logging.getLogger(__name__) | |
__all__ = ["StfpmLightning"] | |
class StfpmLightning(AnomalyModule): | |
"""PL Lightning Module for the STFPM algorithm.""" | |
def __init__(self, hparams): | |
super().__init__(hparams) | |
logger.info("Initializing Stfpm Lightning model.") | |
self.model = STFPMModel( | |
layers=hparams.model.layers, | |
input_size=hparams.model.input_size, | |
tile_size=hparams.dataset.tiling.tile_size, | |
tile_stride=hparams.dataset.tiling.stride, | |
backbone=hparams.model.backbone, | |
apply_tiling=hparams.dataset.tiling.apply, | |
) | |
self.loss_val = 0 | |
def configure_callbacks(self): | |
"""Configure model-specific callbacks.""" | |
early_stopping = EarlyStopping( | |
monitor=self.hparams.model.early_stopping.metric, | |
patience=self.hparams.model.early_stopping.patience, | |
mode=self.hparams.model.early_stopping.mode, | |
) | |
return [early_stopping] | |
def configure_optimizers(self) -> torch.optim.Optimizer: | |
"""Configure optimizers by creating an SGD optimizer. | |
Returns: | |
(Optimizer): SGD optimizer | |
""" | |
return optim.SGD( | |
params=self.model.student_model.parameters(), | |
lr=self.hparams.model.lr, | |
momentum=self.hparams.model.momentum, | |
weight_decay=self.hparams.model.weight_decay, | |
) | |
def training_step(self, batch, _): # pylint: disable=arguments-differ | |
"""Training Step of STFPM. | |
For each batch, teacher and student and teacher features are extracted from the CNN. | |
Args: | |
batch (Tensor): Input batch | |
_: Index of the batch. | |
Returns: | |
Hierarchical feature map | |
""" | |
self.model.teacher_model.eval() | |
teacher_features, student_features = self.model.forward(batch["image"]) | |
loss = self.loss_val + self.model.loss(teacher_features, student_features) | |
self.loss_val = 0 | |
return {"loss": loss} | |
def validation_step(self, batch, _): # pylint: disable=arguments-differ | |
"""Validation Step of STFPM. | |
Similar to the training step, student/teacher features are extracted from the CNN for each batch, and | |
anomaly map is computed. | |
Args: | |
batch (Tensor): Input batch | |
_: Index of the batch. | |
Returns: | |
Dictionary containing images, anomaly maps, true labels and masks. | |
These are required in `validation_epoch_end` for feature concatenation. | |
""" | |
batch["anomaly_maps"] = self.model(batch["image"]) | |
return batch | |