julien.blanchon
add app
c8c12e9
"""PyTorch model for the STFPM model implementation."""
# Copyright (C) 2020 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions
# and limitations under the License.
from typing import Dict, List, Optional, Tuple
import torch
import torch.nn.functional as F
import torchvision
from torch import Tensor, nn
from anomalib.models.components import FeatureExtractor
from anomalib.models.stfpm.anomaly_map import AnomalyMapGenerator
from anomalib.pre_processing import Tiler
class Loss(nn.Module):
"""Feature Pyramid Loss This class implmenents the feature pyramid loss function proposed in STFPM paper.
Example:
>>> from anomalib.models.components.feature_extractors.feature_extractor import FeatureExtractor
>>> from anomalib.models.stfpm.torch_model import Loss
>>> from torchvision.models import resnet18
>>> layers = ['layer1', 'layer2', 'layer3']
>>> teacher_model = FeatureExtractor(model=resnet18(pretrained=True), layers=layers)
>>> student_model = FeatureExtractor(model=resnet18(pretrained=False), layers=layers)
>>> loss = Loss()
>>> inp = torch.rand((4, 3, 256, 256))
>>> teacher_features = teacher_model(inp)
>>> student_features = student_model(inp)
>>> loss(student_features, teacher_features)
tensor(51.2015, grad_fn=<SumBackward0>)
"""
def __init__(self):
super().__init__()
self.mse_loss = nn.MSELoss(reduction="sum")
def compute_layer_loss(self, teacher_feats: Tensor, student_feats: Tensor) -> Tensor:
"""Compute layer loss based on Equation (1) in Section 3.2 of the paper.
Args:
teacher_feats (Tensor): Teacher features
student_feats (Tensor): Student features
Returns:
L2 distance between teacher and student features.
"""
height, width = teacher_feats.shape[2:]
norm_teacher_features = F.normalize(teacher_feats)
norm_student_features = F.normalize(student_feats)
layer_loss = (0.5 / (width * height)) * self.mse_loss(norm_teacher_features, norm_student_features)
return layer_loss
def forward(self, teacher_features: Dict[str, Tensor], student_features: Dict[str, Tensor]) -> Tensor:
"""Compute the overall loss via the weighted average of the layer losses computed by the cosine similarity.
Args:
teacher_features (Dict[str, Tensor]): Teacher features
student_features (Dict[str, Tensor]): Student features
Returns:
Total loss, which is the weighted average of the layer losses.
"""
layer_losses: List[Tensor] = []
for layer in teacher_features.keys():
loss = self.compute_layer_loss(teacher_features[layer], student_features[layer])
layer_losses.append(loss)
total_loss = torch.stack(layer_losses).sum()
return total_loss
class STFPMModel(nn.Module):
"""STFPM: Student-Teacher Feature Pyramid Matching for Unsupervised Anomaly Detection.
Args:
layers (List[str]): Layers used for feature extraction
input_size (Tuple[int, int]): Input size for the model.
tile_size (Tuple[int, int]): Tile size
tile_stride (int): Stride for tiling
backbone (str, optional): Pre-trained model backbone. Defaults to "resnet18".
apply_tiling (bool, optional): Apply tiling. Defaults to False.
"""
def __init__(
self,
layers: List[str],
input_size: Tuple[int, int],
backbone: str = "resnet18",
apply_tiling: bool = False,
tile_size: Optional[Tuple[int, int]] = None,
tile_stride: Optional[int] = None,
):
super().__init__()
self.backbone = getattr(torchvision.models, backbone)
self.apply_tiling = apply_tiling
self.teacher_model = FeatureExtractor(backbone=self.backbone(pretrained=True), layers=layers)
self.student_model = FeatureExtractor(backbone=self.backbone(pretrained=False), layers=layers)
# teacher model is fixed
for parameters in self.teacher_model.parameters():
parameters.requires_grad = False
self.loss = Loss()
if self.apply_tiling:
assert tile_size is not None
assert tile_stride is not None
self.tiler = Tiler(tile_size, tile_stride)
self.anomaly_map_generator = AnomalyMapGenerator(image_size=tuple(tile_size))
else:
self.anomaly_map_generator = AnomalyMapGenerator(image_size=tuple(input_size))
def forward(self, images):
"""Forward-pass images into the network.
During the training mode the model extracts the features from the teacher and student networks.
During the evaluation mode, it returns the predicted anomaly map.
Args:
images (Tensor): Batch of images.
Returns:
Teacher and student features when in training mode, otherwise the predicted anomaly maps.
"""
if self.apply_tiling:
images = self.tiler.tile(images)
teacher_features: Dict[str, Tensor] = self.teacher_model(images)
student_features: Dict[str, Tensor] = self.student_model(images)
if self.training:
output = teacher_features, student_features
else:
output = self.anomaly_map_generator(teacher_features=teacher_features, student_features=student_features)
if self.apply_tiling:
output = self.tiler.untile(output)
return output