Spaces:
Build error
Build error
"""Anomalib Traning Script. | |
This script reads the name of the model or config file from command | |
line, train/test the anomaly model to get quantitative and qualitative | |
results. | |
""" | |
# Copyright (C) 2020 Intel Corporation | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, | |
# software distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions | |
# and limitations under the License. | |
import logging | |
import warnings | |
from argparse import ArgumentParser, Namespace | |
from pytorch_lightning import Trainer, seed_everything | |
from anomalib.config import get_configurable_parameters | |
from anomalib.data import get_datamodule | |
from anomalib.models import get_model | |
from anomalib.utils.callbacks import LoadModelCallback, get_callbacks | |
from anomalib.utils.loggers import configure_logger, get_experiment_logger | |
logger = logging.getLogger("anomalib") | |
def get_args() -> Namespace: | |
"""Get command line arguments. | |
Returns: | |
Namespace: List of arguments. | |
""" | |
parser = ArgumentParser() | |
parser.add_argument("--model", type=str, default="padim", help="Name of the algorithm to train/test") | |
# --model_config_path will be deprecated in 0.2.8 and removed in 0.2.9 | |
parser.add_argument("--model_config_path", type=str, required=False, help="Path to a model config file") | |
parser.add_argument("--config", type=str, required=False, help="Path to a model config file") | |
parser.add_argument("--log-level", type=str, default="INFO", help="<DEBUG, INFO, WARNING, ERROR>") | |
args = parser.parse_args() | |
if args.model_config_path is not None: | |
warnings.warn( | |
message="--model_config_path will be deprecated in v0.2.8 and removed in v0.2.9. Use --config instead.", | |
category=DeprecationWarning, | |
stacklevel=2, | |
) | |
args.config = args.model_config_path | |
return args | |
def train(): | |
"""Train an anomaly classification or segmentation model based on a provided configuration file.""" | |
args = get_args() | |
configure_logger(level=args.log_level) | |
config = get_configurable_parameters(model_name=args.model, config_path=args.config) | |
if config.project.seed != 0: | |
seed_everything(config.project.seed) | |
if args.log_level == "ERROR": | |
warnings.filterwarnings("ignore") | |
logger.info("Loading the datamodule") | |
datamodule = get_datamodule(config) | |
logger.info("Loading the model.") | |
model = get_model(config) | |
logger.info("Loading the experiment logger(s)") | |
experiment_logger = get_experiment_logger(config) | |
logger.info("Loading the callbacks") | |
callbacks = get_callbacks(config) | |
trainer = Trainer(**config.trainer, logger=experiment_logger, callbacks=callbacks) | |
logger.info("Training the model.") | |
trainer.fit(model=model, datamodule=datamodule) | |
logger.info("Loading the best model weights.") | |
load_model_callback = LoadModelCallback(weights_path=trainer.checkpoint_callback.best_model_path) | |
trainer.callbacks.insert(0, load_model_callback) | |
logger.info("Testing the model.") | |
trainer.test(model=model, datamodule=datamodule) | |
if __name__ == "__main__": | |
train() | |