"""Callbacks for NNCF optimization.""" # Copyright (C) 2022 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions # and limitations under the License. import os from typing import Any, Dict, Optional import pytorch_lightning as pl from nncf import NNCFConfig from nncf.api.compression import CompressionAlgorithmController from nncf.torch import register_default_init_args from pytorch_lightning import Callback from anomalib.utils.callbacks.nncf.utils import InitLoader, wrap_nncf_model class NNCFCallback(Callback): """Callback for NNCF compression. Assumes that the pl module contains a 'model' attribute, which is the PyTorch module that must be compressed. Args: config (Dict): NNCF Configuration export_dir (Str): Path where the export `onnx` and the OpenVINO `xml` and `bin` IR are saved. If None model will not be exported. """ def __init__(self, nncf_config: Dict, export_dir: str = None): self.export_dir = export_dir self.nncf_config = NNCFConfig(nncf_config) self.nncf_ctrl: Optional[CompressionAlgorithmController] = None # pylint: disable=unused-argument def setup(self, trainer: pl.Trainer, pl_module: pl.LightningModule, stage: Optional[str] = None) -> None: """Call when fit or test begins. Takes the pytorch model and wraps it using the compression controller so that it is ready for nncf fine-tuning. """ if self.nncf_ctrl is not None: return init_loader = InitLoader(trainer.datamodule.train_dataloader()) # type: ignore nncf_config = register_default_init_args(self.nncf_config, init_loader) self.nncf_ctrl, pl_module.model = wrap_nncf_model( model=pl_module.model, config=nncf_config, dataloader=trainer.datamodule.train_dataloader() # type: ignore ) def on_train_batch_start( self, trainer: pl.Trainer, _pl_module: pl.LightningModule, _batch: Any, _batch_idx: int, _unused: Optional[int] = 0, ) -> None: """Call when the train batch begins. Prepare compression method to continue training the model in the next step. """ if self.nncf_ctrl: self.nncf_ctrl.scheduler.step() def on_train_epoch_start(self, _trainer: pl.Trainer, _pl_module: pl.LightningModule) -> None: """Call when the train epoch starts. Prepare compression method to continue training the model in the next epoch. """ if self.nncf_ctrl: self.nncf_ctrl.scheduler.epoch_step() def on_train_end(self, _trainer: pl.Trainer, _pl_module: pl.LightningModule) -> None: """Call when the train ends. Exports onnx model and if compression controller is not None, uses the onnx model to generate the OpenVINO IR. """ if self.export_dir is None or self.nncf_ctrl is None: return os.makedirs(self.export_dir, exist_ok=True) onnx_path = os.path.join(self.export_dir, "model_nncf.onnx") self.nncf_ctrl.export_model(onnx_path) optimize_command = "mo --input_model " + onnx_path + " --output_dir " + self.export_dir os.system(optimize_command)