"""Custom Folder Dataset. This script creates a custom dataset from a folder. """ # Copyright (C) 2020 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions # and limitations under the License. import logging import warnings from pathlib import Path from typing import Dict, Optional, Tuple, Union import albumentations as A import cv2 import numpy as np from pandas.core.frame import DataFrame from pytorch_lightning.core.datamodule import LightningDataModule from pytorch_lightning.utilities.types import EVAL_DATALOADERS, TRAIN_DATALOADERS from torch import Tensor from torch.utils.data import DataLoader, Dataset from torchvision.datasets.folder import IMG_EXTENSIONS from anomalib.data.inference import InferenceDataset from anomalib.data.utils import read_image from anomalib.data.utils.split import ( create_validation_set_from_test_set, split_normal_images_in_train_set, ) from anomalib.pre_processing import PreProcessor logger = logging.getLogger(__name__) def _check_and_convert_path(path: Union[str, Path]) -> Path: """Check an input path, and convert to Pathlib object. Args: path (Union[str, Path]): Input path. Returns: Path: Output path converted to pathlib object. """ if not isinstance(path, Path): path = Path(path) return path def _prepare_files_labels( path: Union[str, Path], path_type: str, extensions: Optional[Tuple[str, ...]] = None ) -> Tuple[list, list]: """Return a list of filenames and list corresponding labels. Args: path (Union[str, Path]): Path to the directory containing images. path_type (str): Type of images in the provided path ("normal", "abnormal", "normal_test") extensions (Optional[Tuple[str, ...]], optional): Type of the image extensions to read from the directory. Returns: List, List: Filenames of the images provided in the paths, labels of the images provided in the paths """ path = _check_and_convert_path(path) if extensions is None: extensions = IMG_EXTENSIONS if isinstance(extensions, str): extensions = (extensions,) filenames = [f for f in path.glob(r"**/*") if f.suffix in extensions and not f.is_dir()] if len(filenames) == 0: raise RuntimeError(f"Found 0 {path_type} images in {path}") labels = [path_type] * len(filenames) return filenames, labels def make_dataset( normal_dir: Union[str, Path], abnormal_dir: Union[str, Path], normal_test_dir: Optional[Union[str, Path]] = None, mask_dir: Optional[Union[str, Path]] = None, split: Optional[str] = None, split_ratio: float = 0.2, seed: int = 0, create_validation_set: bool = True, extensions: Optional[Tuple[str, ...]] = None, ): """Make Folder Dataset. Args: normal_dir (Union[str, Path]): Path to the directory containing normal images. abnormal_dir (Union[str, Path]): Path to the directory containing abnormal images. normal_test_dir (Optional[Union[str, Path]], optional): Path to the directory containing normal images for the test dataset. Normal test images will be a split of `normal_dir` if `None`. Defaults to None. mask_dir (Optional[Union[str, Path]], optional): Path to the directory containing the mask annotations. Defaults to None. split (Optional[str], optional): Dataset split (ie., either train or test). Defaults to None. split_ratio (float, optional): Ratio to split normal training images and add to the test set in case test set doesn't contain any normal images. Defaults to 0.2. seed (int, optional): Random seed to ensure reproducibility when splitting. Defaults to 0. create_validation_set (bool, optional):Boolean to create a validation set from the test set. Those wanting to create a validation set could set this flag to ``True``. extensions (Optional[Tuple[str, ...]], optional): Type of the image extensions to read from the directory. Returns: DataFrame: an output dataframe containing samples for the requested split (ie., train or test) """ filenames = [] labels = [] dirs = {"normal": normal_dir, "abnormal": abnormal_dir} if normal_test_dir: dirs = {**dirs, **{"normal_test": normal_test_dir}} for dir_type, path in dirs.items(): filename, label = _prepare_files_labels(path, dir_type, extensions) filenames += filename labels += label samples = DataFrame({"image_path": filenames, "label": labels}) # Create label index for normal (0) and abnormal (1) images. samples.loc[(samples.label == "normal") | (samples.label == "normal_test"), "label_index"] = 0 samples.loc[(samples.label == "abnormal"), "label_index"] = 1 samples.label_index = samples.label_index.astype(int) # If a path to mask is provided, add it to the sample dataframe. if mask_dir is not None: mask_dir = _check_and_convert_path(mask_dir) samples["mask_path"] = "" for index, row in samples.iterrows(): if row.label_index == 1: samples.loc[index, "mask_path"] = str(mask_dir / row.image_path.name) # Ensure the pathlib objects are converted to str. # This is because torch dataloader doesn't like pathlib. samples = samples.astype({"image_path": "str"}) # Create train/test split. # By default, all the normal samples are assigned as train. # and all the abnormal samples are test. samples.loc[(samples.label == "normal"), "split"] = "train" samples.loc[(samples.label == "abnormal") | (samples.label == "normal_test"), "split"] = "test" if not normal_test_dir: samples = split_normal_images_in_train_set( samples=samples, split_ratio=split_ratio, seed=seed, normal_label="normal" ) # If `create_validation_set` is set to True, the test set is split into half. if create_validation_set: samples = create_validation_set_from_test_set(samples, seed=seed, normal_label="normal") # Get the data frame for the split. if split is not None and split in ["train", "val", "test"]: samples = samples[samples.split == split] samples = samples.reset_index(drop=True) return samples class FolderDataset(Dataset): """Folder Dataset.""" def __init__( self, normal_dir: Union[Path, str], abnormal_dir: Union[Path, str], split: str, pre_process: PreProcessor, normal_test_dir: Optional[Union[Path, str]] = None, split_ratio: float = 0.2, mask_dir: Optional[Union[Path, str]] = None, extensions: Optional[Tuple[str, ...]] = None, task: Optional[str] = None, seed: int = 0, create_validation_set: bool = False, ) -> None: """Create Folder Folder Dataset. Args: normal_dir (Union[str, Path]): Path to the directory containing normal images. abnormal_dir (Union[str, Path]): Path to the directory containing abnormal images. split (Optional[str], optional): Dataset split (ie., either train or test). Defaults to None. pre_process (Optional[PreProcessor], optional): Image Pro-processor to apply transform. Defaults to None. normal_test_dir (Optional[Union[str, Path]], optional): Path to the directory containing normal images for the test dataset. Defaults to None. split_ratio (float, optional): Ratio to split normal training images and add to the test set in case test set doesn't contain any normal images. Defaults to 0.2. mask_dir (Optional[Union[str, Path]], optional): Path to the directory containing the mask annotations. Defaults to None. extensions (Optional[Tuple[str, ...]], optional): Type of the image extensions to read from the directory. task (Optional[str], optional): Task type. (classification or segmentation) Defaults to None. seed (int, optional): Random seed to ensure reproducibility when splitting. Defaults to 0. create_validation_set (bool, optional):Boolean to create a validation set from the test set. Those wanting to create a validation set could set this flag to ``True``. Raises: ValueError: When task is set to classification and `mask_dir` is provided. When `mask_dir` is provided, `task` should be set to `segmentation`. """ self.split = split if task == "segmentation" and mask_dir is None: warnings.warn( "Segmentation task is requested, but mask directory is not provided. " "Classification is to be chosen if mask directory is not provided." ) self.task = "classification" if task == "classification" and mask_dir: warnings.warn( "Classification task is requested, but mask directory is provided. " "Segmentation task is to be chosen if mask directory is provided." ) self.task = "segmentation" if task is None or mask_dir is None: self.task = "classification" else: self.task = task self.pre_process = pre_process self.samples = make_dataset( normal_dir=normal_dir, abnormal_dir=abnormal_dir, normal_test_dir=normal_test_dir, mask_dir=mask_dir, split=split, split_ratio=split_ratio, seed=seed, create_validation_set=create_validation_set, extensions=extensions, ) def __len__(self) -> int: """Get length of the dataset.""" return len(self.samples) def __getitem__(self, index: int) -> Dict[str, Union[str, Tensor]]: """Get dataset item for the index ``index``. Args: index (int): Index to get the item. Returns: Union[Dict[str, Tensor], Dict[str, Union[str, Tensor]]]: Dict of image tensor during training. Otherwise, Dict containing image path, target path, image tensor, label and transformed bounding box. """ item: Dict[str, Union[str, Tensor]] = {} image_path = self.samples.image_path[index] image = read_image(image_path) pre_processed = self.pre_process(image=image) item = {"image": pre_processed["image"]} if self.split in ["val", "test"]: label_index = self.samples.label_index[index] item["image_path"] = image_path item["label"] = label_index if self.task == "segmentation": mask_path = self.samples.mask_path[index] # Only Anomalous (1) images has masks in MVTec AD dataset. # Therefore, create empty mask for Normal (0) images. if label_index == 0: mask = np.zeros(shape=image.shape[:2]) else: mask = cv2.imread(mask_path, flags=0) / 255.0 pre_processed = self.pre_process(image=image, mask=mask) item["mask_path"] = mask_path item["image"] = pre_processed["image"] item["mask"] = pre_processed["mask"] return item class FolderDataModule(LightningDataModule): """Folder Lightning Data Module.""" def __init__( self, root: Union[str, Path], normal_dir: str = "normal", abnormal_dir: str = "abnormal", task: str = "classification", normal_test_dir: Optional[Union[Path, str]] = None, mask_dir: Optional[Union[Path, str]] = None, extensions: Optional[Tuple[str, ...]] = None, split_ratio: float = 0.2, seed: int = 0, image_size: Optional[Union[int, Tuple[int, int]]] = None, train_batch_size: int = 32, test_batch_size: int = 32, num_workers: int = 8, transform_config_train: Optional[Union[str, A.Compose]] = None, transform_config_val: Optional[Union[str, A.Compose]] = None, create_validation_set: bool = False, ) -> None: """Folder Dataset PL Datamodule. Args: root (Union[str, Path]): Path to the root folder containing normal and abnormal dirs. normal_dir (str, optional): Name of the directory containing normal images. Defaults to "normal". abnormal_dir (str, optional): Name of the directory containing abnormal images. Defaults to "abnormal". task (str, optional): Task type. Could be either classification or segmentation. Defaults to "classification". normal_test_dir (Optional[Union[str, Path]], optional): Path to the directory containing normal images for the test dataset. Defaults to None. mask_dir (Optional[Union[str, Path]], optional): Path to the directory containing the mask annotations. Defaults to None. extensions (Optional[Tuple[str, ...]], optional): Type of the image extensions to read from the directory. Defaults to None. split_ratio (float, optional): Ratio to split normal training images and add to the test set in case test set doesn't contain any normal images. Defaults to 0.2. seed (int, optional): Random seed to ensure reproducibility when splitting. Defaults to 0. image_size (Optional[Union[int, Tuple[int, int]]], optional): Size of the input image. Defaults to None. train_batch_size (int, optional): Training batch size. Defaults to 32. test_batch_size (int, optional): Test batch size. Defaults to 32. num_workers (int, optional): Number of workers. Defaults to 8. transform_config_train (Optional[Union[str, A.Compose]], optional): Config for pre-processing during training. Defaults to None. transform_config_val (Optional[Union[str, A.Compose]], optional): Config for pre-processing during validation. Defaults to None. create_validation_set (bool, optional):Boolean to create a validation set from the test set. Those wanting to create a validation set could set this flag to ``True``. Examples: Assume that we use Folder Dataset for the MVTec/bottle/broken_large category. We would do: >>> from anomalib.data import FolderDataModule >>> datamodule = FolderDataModule( ... root="./datasets/MVTec/bottle/test", ... normal="good", ... abnormal="broken_large", ... image_size=256 ... ) >>> datamodule.setup() >>> i, data = next(enumerate(datamodule.train_dataloader())) >>> data["image"].shape torch.Size([16, 3, 256, 256]) >>> i, test_data = next(enumerate(datamodule.test_dataloader())) >>> test_data.keys() dict_keys(['image']) We could also create a Folder DataModule for datasets containing mask annotations. The dataset expects that mask annotation filenames must be same as the original filename. To this end, we modified mask filenames in MVTec AD bottle category. Now we could try folder data module using the mvtec bottle broken large category >>> datamodule = FolderDataModule( ... root="./datasets/bottle/test", ... normal="good", ... abnormal="broken_large", ... mask_dir="./datasets/bottle/ground_truth/broken_large", ... image_size=256 ... ) >>> i , train_data = next(enumerate(datamodule.train_dataloader())) >>> train_data.keys() dict_keys(['image']) >>> train_data["image"].shape torch.Size([16, 3, 256, 256]) >>> i, test_data = next(enumerate(datamodule.test_dataloader())) dict_keys(['image_path', 'label', 'mask_path', 'image', 'mask']) >>> print(test_data["image"].shape, test_data["mask"].shape) torch.Size([24, 3, 256, 256]) torch.Size([24, 256, 256]) By default, Folder Data Module does not create a validation set. If a validation set is needed it could be set as follows: >>> datamodule = FolderDataModule( ... root="./datasets/bottle/test", ... normal="good", ... abnormal="broken_large", ... mask_dir="./datasets/bottle/ground_truth/broken_large", ... image_size=256, ... create_validation_set=True, ... ) >>> i, val_data = next(enumerate(datamodule.val_dataloader())) >>> val_data.keys() dict_keys(['image_path', 'label', 'mask_path', 'image', 'mask']) >>> print(val_data["image"].shape, val_data["mask"].shape) torch.Size([12, 3, 256, 256]) torch.Size([12, 256, 256]) >>> i, test_data = next(enumerate(datamodule.test_dataloader())) >>> print(test_data["image"].shape, test_data["mask"].shape) torch.Size([12, 3, 256, 256]) torch.Size([12, 256, 256]) """ super().__init__() self.root = _check_and_convert_path(root) self.normal_dir = self.root / normal_dir self.abnormal_dir = self.root / abnormal_dir self.normal_test = normal_test_dir if normal_test_dir: self.normal_test = self.root / normal_test_dir self.mask_dir = mask_dir self.extensions = extensions self.split_ratio = split_ratio if task == "classification" and mask_dir is not None: raise ValueError( "Classification type is set but mask_dir provided. " "If mask_dir is provided task type must be segmentation. " "Check your configuration." ) self.task = task self.transform_config_train = transform_config_train self.transform_config_val = transform_config_val self.image_size = image_size if self.transform_config_train is not None and self.transform_config_val is None: self.transform_config_val = self.transform_config_train self.pre_process_train = PreProcessor(config=self.transform_config_train, image_size=self.image_size) self.pre_process_val = PreProcessor(config=self.transform_config_val, image_size=self.image_size) self.train_batch_size = train_batch_size self.test_batch_size = test_batch_size self.num_workers = num_workers self.create_validation_set = create_validation_set self.seed = seed self.train_data: Dataset self.test_data: Dataset if create_validation_set: self.val_data: Dataset self.inference_data: Dataset def setup(self, stage: Optional[str] = None) -> None: """Setup train, validation and test data. Args: stage: Optional[str]: Train/Val/Test stages. (Default value = None) """ logger.info("Setting up train, validation, test and prediction datasets.") if stage in (None, "fit"): self.train_data = FolderDataset( normal_dir=self.normal_dir, abnormal_dir=self.abnormal_dir, normal_test_dir=self.normal_test, split="train", split_ratio=self.split_ratio, mask_dir=self.mask_dir, pre_process=self.pre_process_train, extensions=self.extensions, task=self.task, seed=self.seed, create_validation_set=self.create_validation_set, ) if self.create_validation_set: self.val_data = FolderDataset( normal_dir=self.normal_dir, abnormal_dir=self.abnormal_dir, normal_test_dir=self.normal_test, split="val", split_ratio=self.split_ratio, mask_dir=self.mask_dir, pre_process=self.pre_process_val, extensions=self.extensions, task=self.task, seed=self.seed, create_validation_set=self.create_validation_set, ) self.test_data = FolderDataset( normal_dir=self.normal_dir, abnormal_dir=self.abnormal_dir, split="test", normal_test_dir=self.normal_test, split_ratio=self.split_ratio, mask_dir=self.mask_dir, pre_process=self.pre_process_val, extensions=self.extensions, task=self.task, seed=self.seed, create_validation_set=self.create_validation_set, ) if stage == "predict": self.inference_data = InferenceDataset( path=self.root, image_size=self.image_size, transform_config=self.transform_config_val ) def train_dataloader(self) -> TRAIN_DATALOADERS: """Get train dataloader.""" return DataLoader(self.train_data, shuffle=True, batch_size=self.train_batch_size, num_workers=self.num_workers) def val_dataloader(self) -> EVAL_DATALOADERS: """Get validation dataloader.""" dataset = self.val_data if self.create_validation_set else self.test_data return DataLoader(dataset=dataset, shuffle=False, batch_size=self.test_batch_size, num_workers=self.num_workers) def test_dataloader(self) -> EVAL_DATALOADERS: """Get test dataloader.""" return DataLoader(self.test_data, shuffle=False, batch_size=self.test_batch_size, num_workers=self.num_workers) def predict_dataloader(self) -> EVAL_DATALOADERS: """Get predict dataloader.""" return DataLoader( self.inference_data, shuffle=False, batch_size=self.test_batch_size, num_workers=self.num_workers )