"""This module contains inference-related abstract class and its Torch and OpenVINO implementations.""" # Copyright (C) 2020 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions # and limitations under the License. from importlib.util import find_spec from pathlib import Path from typing import Dict, Optional, Tuple, Union import cv2 import numpy as np from omegaconf import DictConfig, ListConfig from anomalib.pre_processing import PreProcessor from .base import Inferencer if find_spec("openvino") is not None: from openvino.inference_engine import ( # type: ignore # pylint: disable=no-name-in-module IECore, ) class OpenVINOInferencer(Inferencer): """OpenVINO implementation for the inference. Args: config (DictConfig): Configurable parameters that are used during the training stage. path (Union[str, Path]): Path to the openvino onnx, xml or bin file. meta_data_path (Union[str, Path], optional): Path to metadata file. Defaults to None. """ def __init__( self, config: Union[DictConfig, ListConfig], path: Union[str, Path, Tuple[bytes, bytes]], meta_data_path: Union[str, Path] = None, ): self.config = config self.input_blob, self.output_blob, self.network = self.load_model(path) self.meta_data = super()._load_meta_data(meta_data_path) def load_model(self, path: Union[str, Path, Tuple[bytes, bytes]]): """Load the OpenVINO model. Args: path (Union[str, Path, Tuple[bytes, bytes]]): Path to the onnx or xml and bin files or tuple of .xml and .bin data as bytes. Returns: [Tuple[str, str, ExecutableNetwork]]: Input and Output blob names together with the Executable network. """ ie_core = IECore() # If tuple of bytes is passed if isinstance(path, tuple): network = ie_core.read_network(model=path[0], weights=path[1], init_from_buffer=True) else: path = path if isinstance(path, Path) else Path(path) if path.suffix in (".bin", ".xml"): if path.suffix == ".bin": bin_path, xml_path = path, path.with_suffix(".xml") elif path.suffix == ".xml": xml_path, bin_path = path, path.with_suffix(".bin") network = ie_core.read_network(xml_path, bin_path) elif path.suffix == ".onnx": network = ie_core.read_network(path) else: raise ValueError(f"Path must be .onnx, .bin or .xml file. Got {path.suffix}") input_blob = next(iter(network.input_info)) output_blob = next(iter(network.outputs)) executable_network = ie_core.load_network(network=network, device_name="CPU") return input_blob, output_blob, executable_network def pre_process(self, image: np.ndarray) -> np.ndarray: """Pre process the input image by applying transformations. Args: image (np.ndarray): Input image. Returns: np.ndarray: pre-processed image. """ config = self.config.transform if "transform" in self.config.keys() else None image_size = tuple(self.config.dataset.image_size) pre_processor = PreProcessor(config, image_size) processed_image = pre_processor(image=image)["image"] if len(processed_image.shape) == 3: processed_image = np.expand_dims(processed_image, axis=0) if processed_image.shape[-1] == 3: processed_image = processed_image.transpose(0, 3, 1, 2) return processed_image def forward(self, image: np.ndarray) -> np.ndarray: """Forward-Pass input tensor to the model. Args: image (np.ndarray): Input tensor. Returns: np.ndarray: Output predictions. """ return self.network.infer(inputs={self.input_blob: image}) def post_process( self, predictions: np.ndarray, meta_data: Optional[Union[Dict, DictConfig]] = None ) -> Tuple[np.ndarray, float]: """Post process the output predictions. Args: predictions (np.ndarray): Raw output predicted by the model. meta_data (Dict, optional): Meta data. Post-processing step sometimes requires additional meta data such as image shape. This variable comprises such info. Defaults to None. Returns: np.ndarray: Post processed predictions that are ready to be visualized. """ if meta_data is None: meta_data = self.meta_data predictions = predictions[self.output_blob] anomaly_map = predictions.squeeze() pred_score = anomaly_map.reshape(-1).max() anomaly_map, pred_score = self._normalize(anomaly_map, pred_score, meta_data) if "image_shape" in meta_data and anomaly_map.shape != meta_data["image_shape"]: anomaly_map = cv2.resize(anomaly_map, meta_data["image_shape"]) return anomaly_map, float(pred_score)