"""Utilities for optimization and OpenVINO conversion.""" # Copyright (C) 2020 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions # and limitations under the License. import json import os from pathlib import Path from typing import Dict, List, Tuple, Union import numpy as np import torch from torch import Tensor from anomalib.models.components import AnomalyModule def get_model_metadata(model: AnomalyModule) -> Dict[str, Tensor]: """Get meta data related to normalization from model. Args: model (AnomalyModule): Anomaly model which contains metadata related to normalization. Returns: Dict[str, Tensor]: metadata """ meta_data = {} cached_meta_data = { "image_threshold": model.image_threshold.cpu().value, "pixel_threshold": model.pixel_threshold.cpu().value, "pixel_mean": model.training_distribution.pixel_mean.cpu(), "image_mean": model.training_distribution.image_mean.cpu(), "pixel_std": model.training_distribution.pixel_std.cpu(), "image_std": model.training_distribution.image_std.cpu(), "min": model.min_max.min.cpu(), "max": model.min_max.max.cpu(), } # Remove undefined values by copying in a new dict for key, val in cached_meta_data.items(): if not np.isinf(val).all(): meta_data[key] = val del cached_meta_data return meta_data def export_convert( model: AnomalyModule, input_size: Union[List[int], Tuple[int, int]], onnx_path: Union[str, Path], export_path: Union[str, Path], ): """Export the model to onnx format and convert to OpenVINO IR. Args: model (AnomalyModule): Model to convert. input_size (Union[List[int], Tuple[int, int]]): Image size used as the input for onnx converter. onnx_path (Union[str, Path]): Path to output onnx model. export_path (Union[str, Path]): Path to exported OpenVINO IR. """ height, width = input_size torch.onnx.export( model.model, torch.zeros((1, 3, height, width)).to(model.device), onnx_path, opset_version=11, input_names=["input"], output_names=["output"], ) optimize_command = "mo --input_model " + str(onnx_path) + " --output_dir " + str(export_path) os.system(optimize_command) with open(Path(export_path) / "meta_data.json", "w", encoding="utf-8") as metadata_file: meta_data = get_model_metadata(model) # Convert metadata from torch for key, value in meta_data.items(): if isinstance(value, Tensor): meta_data[key] = value.numpy().tolist() json.dump(meta_data, metadata_file, ensure_ascii=False, indent=4)