"""Post Process This module contains utils function to apply post-processing to the output predictions.""" # Copyright (C) 2020 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions # and limitations under the License. import cv2 import numpy as np from skimage import morphology def anomaly_map_to_color_map(anomaly_map: np.ndarray, normalize: bool = True) -> np.ndarray: """Compute anomaly color heatmap. Args: anomaly_map (np.ndarray): Final anomaly map computed by the distance metric. normalize (bool, optional): Bool to normalize the anomaly map prior to applying the color map. Defaults to True. Returns: np.ndarray: [description] """ if normalize: anomaly_map = (anomaly_map - anomaly_map.min()) / np.ptp(anomaly_map) anomaly_map = anomaly_map * 255 anomaly_map = anomaly_map.astype(np.uint8) anomaly_map = cv2.applyColorMap(anomaly_map, cv2.COLORMAP_JET) anomaly_map = cv2.cvtColor(anomaly_map, cv2.COLOR_BGR2RGB) return anomaly_map def superimpose_anomaly_map( anomaly_map: np.ndarray, image: np.ndarray, alpha: float = 0.4, gamma: int = 0, normalize: bool = False ) -> np.ndarray: """Superimpose anomaly map on top of in the input image. Args: anomaly_map (np.ndarray): Anomaly map image (np.ndarray): Input image alpha (float, optional): Weight to overlay anomaly map on the input image. Defaults to 0.4. gamma (int, optional): Value to add to the blended image to smooth the processing. Defaults to 0. Overall, the formula to compute the blended image is I' = (alpha*I1 + (1-alpha)*I2) + gamma normalize: whether or not the anomaly maps should be normalized to image min-max Returns: np.ndarray: Image with anomaly map superimposed on top of it. """ anomaly_map = anomaly_map_to_color_map(anomaly_map.squeeze(), normalize=normalize) superimposed_map = cv2.addWeighted(anomaly_map, alpha, image, (1 - alpha), gamma) return superimposed_map def compute_mask(anomaly_map: np.ndarray, threshold: float, kernel_size: int = 4) -> np.ndarray: """Compute anomaly mask via thresholding the predicted anomaly map. Args: anomaly_map (np.ndarray): Anomaly map predicted via the model threshold (float): Value to threshold anomaly scores into 0-1 range. kernel_size (int): Value to apply morphological operations to the predicted mask. Defaults to 4. Returns: Predicted anomaly mask """ anomaly_map = anomaly_map.squeeze() mask: np.ndarray = np.zeros_like(anomaly_map).astype(np.uint8) mask[anomaly_map > threshold] = 1 kernel = morphology.disk(kernel_size) mask = morphology.opening(mask, kernel) mask *= 255 return mask