"""Anomalib Metric Collection.""" # Copyright (C) 2020 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions # and limitations under the License. from torchmetrics import MetricCollection class AnomalibMetricCollection(MetricCollection): """Extends the MetricCollection class for use in the Anomalib pipeline.""" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self._update_called = False self._threshold = 0.5 def set_threshold(self, threshold_value): """Update the threshold value for all metrics that have the threshold attribute.""" self._threshold = threshold_value for metric in self.values(): if hasattr(metric, "threshold"): metric.threshold = threshold_value def update(self, *args, **kwargs) -> None: """Add data to the metrics.""" super().update(*args, **kwargs) self._update_called = True @property def update_called(self) -> bool: """Returns a boolean indicating if the update method has been called at least once.""" return self._update_called @property def threshold(self) -> float: """Return the value of the anomaly threshold.""" return self._threshold