"""Module that tracks the min and max values of the observations in each batch.""" # Copyright (C) 2020 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions # and limitations under the License. from typing import Tuple import torch from torch import Tensor from torchmetrics import Metric class MinMax(Metric): """Track the min and max values of the observations in each batch.""" def __init__(self, **kwargs): super().__init__(**kwargs) self.add_state("min", torch.tensor(float("inf")), persistent=True) # pylint: disable=not-callable self.add_state("max", torch.tensor(float("-inf")), persistent=True) # pylint: disable=not-callable self.min = torch.tensor(float("inf")) # pylint: disable=not-callable self.max = torch.tensor(float("-inf")) # pylint: disable=not-callable # pylint: disable=arguments-differ def update(self, predictions: Tensor) -> None: # type: ignore """Update the min and max values.""" self.max = torch.max(self.max, torch.max(predictions)) self.min = torch.min(self.min, torch.min(predictions)) def compute(self) -> Tuple[Tensor, Tensor]: """Return min and max values.""" return self.min, self.max