import os import shutil from contextlib import ContextDecorator from functools import wraps from pathlib import Path from tempfile import mkdtemp from typing import Dict, List, Optional, Union import numpy as np from skimage.io import imsave from .shapes import random_shapes def get_dataset_path(dataset: str = "MVTec") -> str: """Selects path based on tests in local system or docker image. Local install assumes datasets are located in anomaly/datasets/. In either case, if the location is empty, the dataset is downloaded again. This speeds up tests in docker images where dataset is already stored in /tmp/anomalib Example: Assume that `datasets directory exists in ~/anomalib/, >>> get_dataset_path(dataset="MVTec") './datasets/MVTec' """ # Initially check if `datasets` directory exists locally and look # for the `dataset`. This is useful for local testing. path = os.path.join("./datasets", dataset) # For docker deployment or a CI that runs on server, dataset directory # may not necessarily be located in the repo. Therefore, check anomalib # dataset path environment variable. if not os.path.isdir(path): path = os.path.join(os.environ["ANOMALIB_DATASET_PATH"], dataset) return path def generate_random_anomaly_image( image_width: int, image_height: int, shapes: List[str] = ["triangle", "rectangle"], max_shapes: Optional[int] = 5, generate_mask: Optional[bool] = False, ) -> Dict: """Generate a random image with the corresponding shape entities. Args: image_width (int): Width of the image image_height (int): Height of the image shapes (List[str]): List of shapes to draw in the image. Make sure these are different from `anomalous_shapes` max_shapes (int): Maximum shapes of a kind in the image. Defaults to 5. max_size (Optional[int], optional): Maximum size of the test shapes. Defaults to 10. generate_mask (bool): Toggle between train/test split. Train images are restricted to first quadrant. Also generates the mask for the image. Defaults to False. Returns: Tuple: image if `train` is False. Else return image, mask """ image: np.ndarray = np.full((image_height, image_width, 3), 255, dtype=np.uint8) input_region = [0, 0, image_width - 1, image_height - 1] for shape in shapes: shape_image = random_shapes(input_region, (image_height, image_width), max_shapes=max_shapes, shape=shape) image = np.minimum(image, shape_image) # since white is 255 result = {"image": image} if generate_mask: mask = np.zeros((image_height, image_width), dtype=np.uint8) # if color exists in any channel turn the mask bit white. # not sure if there is a better way to do this. mask[image[..., 0] < 255] = 255 mask[image[..., 1] < 255] = 255 mask[image[..., 2] < 255] = 255 result["mask"] = mask return result class TestDataset: def __init__( self, num_train: int = 1000, num_test: int = 100, img_height: int = 128, img_width: int = 128, max_size: int = 10, train_shapes: List[str] = ["triangle", "rectangle"], test_shapes: List[str] = ["hexagon", "star"], path: Union[str, Path] = "./datasets/MVTec", use_mvtec: bool = False, seed: int = 0, ) -> None: """Creates a context for Generating Dummy Dataset. Useful for wrapping test functions. NOTE: for MVTec AD dataset it does not return a category. It is adviced to use a default parameter in the function Args: num_train (int, optional): Number of training images to generate. Defaults to 1000. num_test (int, optional): Number of testing images to generate per category. Defaults to 100. img_height (int, optional): Height of the image. Defaults to 128. img_width (int, optional): Width of the image. Defaults to 128. max_size (Optional[int], optional): Maximum size of the test shapes. Defaults to 10. train_shapes (List[str], optional): List of good shapes. Defaults to ["circle", "rectangle"]. test_shapes (List[str], optional): List of anomalous shapes. Defaults to ["triangle", "ellipse"]. path (Union[str, Path], optional): Path to MVTec AD dataset. Defaults to "./datasets/MVTec". use_mvtec (bool, optional): Use MVTec AD dataset or dummy dataset. Defaults to False. seed (int, optional): Fixes seed if any number greater than 0 is provided. 0 means no seed. Defaults to 0. Example: >>> @TestDataset >>> def test_some_function(path, category="leather"): >>> do something """ self.num_train = num_train self.num_test = num_test self.img_height = img_height self.img_width = img_width self.max_size = max_size self.train_shapes = train_shapes self.test_shapes = test_shapes self.path = path self.use_mvtec = use_mvtec self.seed = seed def __call__(self, func): @wraps(func) def inner(*args, **kwds): # If true, will use MVTech AD dataset for testing. # Useful for nightly builds if self.use_mvtec: return func(*args, path=self.path, **kwds) else: with GeneratedDummyDataset( num_train=self.num_train, num_test=self.num_test, img_height=self.img_height, img_width=self.img_width, train_shapes=self.train_shapes, test_shapes=self.test_shapes, max_size=self.max_size, seed=self.seed, ) as dataset_path: kwds["category"] = "shapes" return func(*args, path=dataset_path, **kwds) return inner class GeneratedDummyDataset(ContextDecorator): """Context for generating dummy shapes dataset. Example: >>> with GeneratedDummyDataset(num_train=1000,num_test=100) as dataset_path: >>> some_function() Args: num_train (int, optional): Number of training images to generate. Defaults to 1000. num_test (int, optional): Number of testing images to generate per category. Defaults to 100. img_height (int, optional): Height of the image. Defaults to 128. img_width (int, optional): Width of the image. Defaults to 128. max_size (Optional[int], optional): Maximum size of the test shapes. Defaults to 10. train_shapes (List[str], optional): List of good shapes. Defaults to ["circle", "rectangle"]. test_shapes (List[str], optional): List of anomalous shapes. Defaults to ["triangle", "ellipse"]. seed (int, optional): Fixes seed if any number greater than 0 is provided. 0 means no seed. Defaults to 0. """ def __init__( self, num_train: int = 1000, num_test: int = 100, img_height: int = 128, img_width: int = 128, max_size: Optional[int] = 10, train_shapes: List[str] = ["triangle", "rectangle"], test_shapes: List[str] = ["star", "hexagon"], seed: int = 0, ) -> None: self.root_dir = mkdtemp() self.num_train = num_train self.num_test = num_test self.train_shapes = train_shapes self.test_shapes = test_shapes self.image_height = img_height self.image_width = img_width self.max_size = max_size self.seed = seed def _generate_dataset(self): """Generates dummy dataset in a temporary directory using the same convention as MVTec AD.""" # create train images train_path = os.path.join(self.root_dir, "shapes", "train", "good") os.makedirs(train_path, exist_ok=True) for i in range(self.num_train): result = generate_random_anomaly_image( image_width=self.image_width, image_height=self.image_height, shapes=self.train_shapes, generate_mask=False, ) image = result["image"] imsave(os.path.join(train_path, f"{i:03}.png"), image, check_contrast=False) # create test images for test_category in self.test_shapes: test_path = os.path.join(self.root_dir, "shapes", "test", test_category) mask_path = os.path.join(self.root_dir, "shapes", "ground_truth", test_category) os.makedirs(test_path, exist_ok=True) os.makedirs(mask_path, exist_ok=True) # anomaly and masks. The idea is to superimpose anomalous shapes on top of correct ones for i in range(self.num_test): correct_shapes = generate_random_anomaly_image( image_width=self.image_width, image_height=self.image_height, shapes=self.train_shapes, generate_mask=False, ) result = generate_random_anomaly_image( image_width=self.image_width, image_height=self.image_height, shapes=[test_category], generate_mask=True, ) correct_shapes = correct_shapes["image"] image, mask = result["image"], result["mask"] image = np.minimum(image, correct_shapes) # since 255 is white imsave(os.path.join(test_path, f"{i:03}.png"), image, check_contrast=False) imsave(os.path.join(mask_path, f"{i:03}_mask.png"), mask, check_contrast=False) # good test test_good = os.path.join(self.root_dir, "shapes", "test", "good") os.makedirs(test_good, exist_ok=True) for i in range(self.num_test): result = generate_random_anomaly_image( image_width=self.image_width, image_height=self.image_height, shapes=self.train_shapes, ) image = result["image"] imsave(os.path.join(test_good, f"{i:03}.png"), image, check_contrast=False) def __enter__(self): """Creates the dataset in temp folder.""" if self.seed > 0: np.random.seed(self.seed) self._generate_dataset() return self.root_dir def __exit__(self, _exc_type, _exc_value, _exc_traceback): """Cleanup the directory.""" shutil.rmtree(self.root_dir)