"""Test This script performs inference on the test dataset and saves the output visualizations into a directory.""" # Copyright (C) 2020 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions # and limitations under the License. import warnings from argparse import ArgumentParser, Namespace from pytorch_lightning import Trainer from anomalib.config import get_configurable_parameters from anomalib.data import get_datamodule from anomalib.models import get_model from anomalib.utils.callbacks import get_callbacks def get_args() -> Namespace: """Get CLI arguments. Returns: Namespace: CLI arguments. """ parser = ArgumentParser() parser.add_argument("--model", type=str, default="stfpm", help="Name of the algorithm to train/test") # --model_config_path will be deprecated in 0.2.8 and removed in 0.2.9 parser.add_argument("--model_config_path", type=str, required=False, help="Path to a model config file") parser.add_argument("--config", type=str, required=False, help="Path to a model config file") parser.add_argument("--weight_file", type=str, default="weights/model.ckpt") args = parser.parse_args() if args.model_config_path is not None: warnings.warn( message="--model_config_path will be deprecated in v0.2.8 and removed in v0.2.9. Use --config instead.", category=DeprecationWarning, stacklevel=2, ) args.config = args.model_config_path return args def test(): """Test an anomaly classification and segmentation model that is initially trained via `tools/train.py`. The script is able to write the results into both filesystem and a logger such as Tensorboard. """ args = get_args() config = get_configurable_parameters( model_name=args.model, config_path=args.config, weight_file=args.weight_file, ) datamodule = get_datamodule(config) model = get_model(config) callbacks = get_callbacks(config) trainer = Trainer(callbacks=callbacks, **config.trainer) trainer.test(model=model, datamodule=datamodule) if __name__ == "__main__": test()