File size: 6,714 Bytes
2e9b7f3
 
93bb4f3
 
 
 
 
 
 
 
2e9b7f3
 
 
2d156cb
2e9b7f3
 
 
93bb4f3
 
 
2e9b7f3
 
93bb4f3
 
 
 
 
 
 
 
441c6e3
 
 
 
 
 
 
93bb4f3
 
 
 
 
 
 
 
 
 
 
 
 
86f88a9
 
 
 
 
 
 
 
 
 
 
 
 
 
4145f35
86f88a9
 
 
4145f35
86f88a9
93bb4f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58a3604
93bb4f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
441c6e3
 
 
8787a8e
93bb4f3
 
 
 
 
 
 
86f88a9
 
93bb4f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
441c6e3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import os

from pathlib import Path

import pandas as pd
import torchaudio
import torch
import numpy as np
import gradio as gr

from dotenv import load_dotenv
from fastrtc import (
    get_cloudflare_turn_credentials_async,
    get_cloudflare_turn_credentials,
    WebRTC,
    ReplyOnPause,
)
from transformers import AutoProcessor, SeamlessM4Tv2Model


load_dotenv(override=True)

parent_dir = Path(__file__).parents[1]
config_path = Path(parent_dir, "configs")

processor = AutoProcessor.from_pretrained("facebook/seamless-m4t-v2-large")
model = SeamlessM4Tv2Model.from_pretrained("facebook/seamless-m4t-v2-large")
default_sampling_rate = 16_000


HF_TOKEN = os.getenv("HF_TOKEN")


async def get_credentials():
    return await get_cloudflare_turn_credentials_async(hf_token=HF_TOKEN)


def translate_audio(
    audio: tuple[int, np.ndarray], tgt_language: str
) -> tuple[int, np.ndarray]:
    """Translate the audio that is captured through the streaming component.
    Source language of the audio has to be one of the supported languages to be successful.

    :param audio: the captured audio
    :type audio: tuple[int, np.ndarray]
    :param tgt_language: the target language for translation
    :type tgt_language: str
    :yield: the tuple containing the sampling rate and the audio array
    :rtype: tuple[int, np.ndarray]
    """
    orig_freq, np_array = audio
    waveform = torch.from_numpy(np_array)
    waveform = waveform.to(torch.float32)
    waveform = waveform / 32768.0  # normalize int16 to [-1, 1]

    audio = torchaudio.functional.resample(
        waveform, orig_freq=orig_freq, new_freq=default_sampling_rate
    )  # must be a 16 kHz waveform array

    audio_inputs = processor(
        audios=audio,
        return_tensors="pt",
        sampling_rate=default_sampling_rate,
    )

    audio_array_from_audio = (
        model.generate(**audio_inputs, tgt_lang=tgt_language)[0].cpu().numpy().squeeze()
    )

    yield (default_sampling_rate, audio_array_from_audio)


# Supported target languages for speech
supported_langs_df = pd.read_excel(Path(config_path, "supported_languages.xlsx"))
supported_speech_langs_df = supported_langs_df[
    supported_langs_df["Target"].str.contains("Sp")
]

# Labels and values for supported speech languages dropdown
supported_speech_langs = list(
    zip(supported_speech_langs_df["language"], supported_speech_langs_df["code"])
)

# Sort by the first element of the tuple (full language name)
supported_speech_langs.sort()

css = """
#componentsContainer {
    width: 70%;
    display: block;
    margin-left: auto;
    margin-right: auto;
}

#langDropdown .container .wrap {
    width: 230px;
}

.audio-container {
    padding-bottom: 2rem !important;
    margin-bottom: 2rem !important;
}

.vspace-sm { margin-bottom: 20px !important; }
.vspace-md { margin-bottom: 40px !important; }
.vspace-lg { margin-bottom: 60px !important; }

.tagline {
    color: #4a5568;
}
.tagline-emphasis {
    font-family: 'Playfair Display', serif;
    font-style: italic;
    color: #718096;
    position: relative;
    display: inline-block;
}
.tagline-emphasis:after {
    content: "";
    position: absolute;
    bottom: -5px;
    left: 0;
    width: 100%;
    height: 2px;
    background: linear-gradient(90deg, transparent, #6a11cb, transparent);
}

.gradio-footer {
    position: fixed;
    bottom: 0;
    left: 0;
    right: 0;
    text-align: center;
    padding: 12px;
    background: var(--background-fill-secondary);
    border-top: 1px solid var(--border-color-primary);
    font-size: 0.9em;
    z-index: 100;
    display: flex;
    justify-content: center;
    align-items: center;
    gap: 6px;
}
.gradio-footer a {
    display: inline-flex;
    align-items: center;
    gap: 4px;
    color: var(--link-text-color);
    text-decoration: none;
}

.fastrtc-icon {
    height: 24px;
    width: 24px;
}
"""


with gr.Blocks(
    theme=gr.themes.Glass(),
    css=css,
) as demo:
    gr.HTML(
        """
        <div style='display: flex; align-items: center; justify-content: center; gap: 20px'>
            <div style="background-color: var(--block-background-fill); border-radius: 8px">
                <img src="https://images.icon-icons.com/3975/PNG/512/translation_language_translator_icon_251869.png" style="width: 100px; height: 100px;">
            </div>
            <div>
                <h1>TalkGlobe</h1>
                <p class="tagline">
                    Break language barriers in real-time <span class="globe-icon">🌍</span><br>
                    <span class="tagline-emphasis">no more lost in translation</span> <span class="globe-icon">✨</span>
                </p>
            </div>
        </div>
        """,
        elem_classes="vspace-sm",
    )

    # The main components (translation language dropdown and streaming capture component)
    with gr.Group(elem_id="componentsContainer"):
        with gr.Row(equal_height=True, min_height="11rem"):
            with gr.Column(scale=5, elem_id="langCol"):
                target_lang = gr.Dropdown(
                    choices=supported_speech_langs,
                    value="eng",
                    label="Supported Languages",
                    info="Select one of the supported languages for translation",
                    elem_id="langDropdown",
                )

            with gr.Column(scale=5, elem_id="micCol"):
                audio = WebRTC(
                    modality="audio",
                    mode="send-receive",
                    label="Audio Stream",
                    rtc_configuration=get_credentials,
                    server_rtc_configuration=get_cloudflare_turn_credentials(
                        ttl=360_000
                    ),
                )

                # Trigger on pause
                audio.stream(
                    ReplyOnPause(translate_audio),
                    inputs=[audio, target_lang],
                    outputs=[audio],
                    concurrency_limit=5,
                    time_limit=60,
                )

    # Sticky footer (will stay at bottom on all screen sizes)
    gr.HTML(
        """
        <div class="gradio-footer">
            Powered by 
            <a href="https://gradio.app/" target="_blank">
                Gradio <img class="gradio-icon" src="https://www.gradio.app/_app/immutable/assets/gradio.CHB5adID.svg" alt="GradioIcon" style="height:24px; width:auto;">
            </a>

            <a href="https://freddyaboulton.github.io/gradio-webrtc/" target="_blank">
                FastRTC <img class="fastrtc-icon" src="https://fastrtc.org/fastrtc_logo.png" alt="FastRTCIcon">
            </a>
        </div>
        """
    )

demo.launch()