Spaces:
Runtime error
Runtime error
Create script.py
Browse files
script.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sqlite3
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import networkx as nx
|
5 |
+
from networkx.algorithms import community
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import random
|
8 |
+
import time
|
9 |
+
from datetime import datetime
|
10 |
+
from googleapiclient.discovery import build
|
11 |
+
import langid
|
12 |
+
from tld import get_tld
|
13 |
+
from fuzzywuzzy import fuzz
|
14 |
+
|
15 |
+
# ---------------------------
|
16 |
+
# Utility Functions
|
17 |
+
# ---------------------------
|
18 |
+
|
19 |
+
def language_detection(text):
|
20 |
+
return langid.classify(text)[0]
|
21 |
+
|
22 |
+
def extract_mainDomain(url):
|
23 |
+
try:
|
24 |
+
res = get_tld(url, as_object=True)
|
25 |
+
return res.fld
|
26 |
+
except Exception:
|
27 |
+
return ""
|
28 |
+
|
29 |
+
def fuzzy_ratio(str1, str2):
|
30 |
+
return fuzz.ratio(str1, str2)
|
31 |
+
|
32 |
+
def fuzzy_token_set_ratio(str1, str2):
|
33 |
+
return fuzz.token_set_ratio(str1, str2)
|
34 |
+
|
35 |
+
# ---------------------------
|
36 |
+
# Google Custom Search
|
37 |
+
# ---------------------------
|
38 |
+
|
39 |
+
def google_search(query, api_key, cse_id, hl, gl):
|
40 |
+
try:
|
41 |
+
service = build("customsearch", "v1", developerKey=api_key, cache_discovery=False)
|
42 |
+
res = service.cse().list(
|
43 |
+
q=query, hl=hl, gl=gl, cx=cse_id,
|
44 |
+
fields='queries(request(totalResults,searchTerms,hl,gl)),items(title,displayLink,link,snippet)',
|
45 |
+
num=10
|
46 |
+
).execute()
|
47 |
+
time.sleep(1)
|
48 |
+
return res
|
49 |
+
except Exception as e:
|
50 |
+
print("Search error:", e)
|
51 |
+
return None
|
52 |
+
|
53 |
+
# ---------------------------
|
54 |
+
# Fetch and Store Search Results
|
55 |
+
# ---------------------------
|
56 |
+
|
57 |
+
def getSearchResult(keywords, hl, gl, api_key, cse_id, database, table):
|
58 |
+
timestamp = datetime.now()
|
59 |
+
rows = []
|
60 |
+
|
61 |
+
for query in keywords:
|
62 |
+
result = google_search(query, api_key, cse_id, hl, gl)
|
63 |
+
if result and "items" in result:
|
64 |
+
for i, item in enumerate(result["items"]):
|
65 |
+
snippet = item.get("snippet", "")
|
66 |
+
title = item.get("title", "")
|
67 |
+
|
68 |
+
rows.append({
|
69 |
+
"requestTimestamp": timestamp,
|
70 |
+
"searchTerms": query,
|
71 |
+
"gl": gl,
|
72 |
+
"hl": hl,
|
73 |
+
"totalResults": result["queries"]["request"][0]["totalResults"],
|
74 |
+
"link": item["link"],
|
75 |
+
"displayLink": item["displayLink"],
|
76 |
+
"main_domain": extract_mainDomain(item["link"]),
|
77 |
+
"position": i + 1,
|
78 |
+
"snippet": snippet,
|
79 |
+
"snipped_language": language_detection(snippet),
|
80 |
+
"snippet_matchScore_order": fuzzy_ratio(snippet, query),
|
81 |
+
"snippet_matchScore_token": fuzzy_token_set_ratio(snippet, query),
|
82 |
+
"title": title,
|
83 |
+
"title_matchScore_order": fuzzy_ratio(title, query),
|
84 |
+
"title_matchScore_token": fuzzy_token_set_ratio(title, query),
|
85 |
+
})
|
86 |
+
|
87 |
+
df = pd.DataFrame(rows)
|
88 |
+
with sqlite3.connect(database) as conn:
|
89 |
+
df.to_sql(table, index=False, if_exists="append", dtype={"requestTimestamp": "DateTime"})
|
90 |
+
|
91 |
+
# ---------------------------
|
92 |
+
# Cluster Graphs
|
93 |
+
# ---------------------------
|
94 |
+
|
95 |
+
def com_postion(n, scale=1, center=(0, 0)):
|
96 |
+
theta = np.linspace(0, 2 * np.pi, n, endpoint=False)
|
97 |
+
pos = np.column_stack((np.cos(theta), np.sin(theta)))
|
98 |
+
return scale * pos + np.array(center)
|
99 |
+
|
100 |
+
def node_postion(nodes, scale=1, center=(0, 0)):
|
101 |
+
n = len(nodes)
|
102 |
+
theta = np.linspace(0, 2 * np.pi, n, endpoint=False)
|
103 |
+
pos = np.column_stack((np.cos(theta), np.sin(theta)))
|
104 |
+
return dict(zip(nodes, scale * pos + np.array(center)))
|
105 |
+
|
106 |
+
def getClustersWithGraph(database, serp_table, timestamp="max"):
|
107 |
+
with sqlite3.connect(database) as conn:
|
108 |
+
if timestamp == "max":
|
109 |
+
query = f'''
|
110 |
+
SELECT * FROM {serp_table}
|
111 |
+
WHERE requestTimestamp = (SELECT MAX(requestTimestamp) FROM {serp_table})
|
112 |
+
'''
|
113 |
+
else:
|
114 |
+
query = f'''
|
115 |
+
SELECT * FROM {serp_table}
|
116 |
+
WHERE requestTimestamp = "{timestamp}"
|
117 |
+
'''
|
118 |
+
df = pd.read_sql(query, conn)
|
119 |
+
|
120 |
+
G = nx.Graph()
|
121 |
+
G.add_nodes_from(df["searchTerms"])
|
122 |
+
|
123 |
+
for _, row in df.iterrows():
|
124 |
+
for _, r2 in df[df["link"] == row["link"]].iterrows():
|
125 |
+
if row["searchTerms"] != r2["searchTerms"]:
|
126 |
+
G.add_edge(row["searchTerms"], r2["searchTerms"])
|
127 |
+
|
128 |
+
communities = community.greedy_modularity_communities(G)
|
129 |
+
degrees = dict(G.degree())
|
130 |
+
colors = ["#" + ''.join(random.choices('0123456789ABCDEF', k=6)) for _ in communities]
|
131 |
+
|
132 |
+
pos = {}
|
133 |
+
centers = com_postion(len(communities), scale=3)
|
134 |
+
for i, group in enumerate(communities):
|
135 |
+
pos.update(node_postion(list(group), scale=0.8, center=centers[i]))
|
136 |
+
|
137 |
+
fig, ax = plt.subplots(figsize=(12, 8), dpi=100)
|
138 |
+
nx.draw(G, pos, with_labels=True, ax=ax, node_size=10, font_size=8, edge_color='gray', alpha=0.2)
|
139 |
+
|
140 |
+
for i, group in enumerate(communities):
|
141 |
+
nx.draw_networkx_nodes(
|
142 |
+
G, pos, nodelist=list(group), node_color=colors[i],
|
143 |
+
node_size=[degrees[n] * 10 for n in group], ax=ax
|
144 |
+
)
|
145 |
+
|
146 |
+
ax.axis('off')
|
147 |
+
|
148 |
+
# Return cluster assignments
|
149 |
+
cluster_rows = []
|
150 |
+
for i, group in enumerate(communities):
|
151 |
+
for kw in group:
|
152 |
+
cluster_rows.append({
|
153 |
+
"searchTerms": kw,
|
154 |
+
"cluster": i,
|
155 |
+
"requestTimestamp": timestamp
|
156 |
+
})
|
157 |
+
df_clusters = pd.DataFrame(cluster_rows)
|
158 |
+
|
159 |
+
return fig, df_clusters
|
160 |
+
|
161 |
+
# ---------------------------
|
162 |
+
# Compare Clusters
|
163 |
+
# ---------------------------
|
164 |
+
|
165 |
+
def compare_clusters(df1, df2):
|
166 |
+
merged = pd.merge(df1, df2, on=\"searchTerms\", suffixes=(\"_1\", \"_2\"))
|
167 |
+
moved = merged[merged[\"cluster_1\"] != merged[\"cluster_2\"]]
|
168 |
+
return moved
|