Spaces:
Sleeping
Sleeping
import json | |
import streamlit as st | |
from google.oauth2 import service_account | |
from google.cloud import language_v1 | |
import requests | |
# Function for querying Google Knowledge Graph API | |
def query_google_knowledge_graph(api_key, entity_name): | |
query = entity_name | |
service_url = "https://kgsearch.googleapis.com/v1/entities:search" | |
params = { | |
'query': query, | |
'limit': 1, | |
'indent': True, | |
'key': api_key, | |
} | |
response = requests.get(service_url, params=params) | |
return response.json() | |
# Header and intro | |
st.title("Google Cloud NLP Entity Analyzer") | |
st.write("## Introduction to the Knowledge Graph API") | |
st.write("---") | |
# ... (your intro text here) | |
def sample_analyze_entities(text_content, your_query=""): | |
api_key = json.loads(st.secrets["google_nlp"]) # The key is the same for both APIs | |
credentials = service_account.Credentials.from_service_account_info( | |
api_key, scopes=["https://www.googleapis.com/auth/cloud-platform"] | |
) | |
client = language_v1.LanguageServiceClient(credentials=credentials) | |
# ... (rest of your NLP code) | |
entities_list = [] | |
for entity in response.entities: | |
entity_details = { | |
"Name": entity.name, | |
"Type": language_v1.Entity.Type(entity.type_).name, | |
"Salience Score": entity.salience, | |
"Metadata": entity.metadata, | |
"Mentions": [mention.text.content for mention in entity.mentions] | |
} | |
entities_list.append(entity_details) | |
if your_query: | |
st.write(f"### We found {len(entities_list)} results for your query of **{your_query}**") | |
else: | |
st.write("### We found results for your query") | |
st.write("----") | |
for i, entity in enumerate(entities_list): | |
# ... (your existing entity display code) | |
# Query Google Knowledge Graph API for each entity | |
kg_info = query_google_knowledge_graph(api_key, entity['Name']) | |
st.write("### Google Knowledge Graph Information") | |
st.json(kg_info) # Display the JSON response | |
st.write("----") | |
# User input for text analysis | |
user_input = st.text_area("Enter text to analyze") | |
your_query = st.text_input("Enter your query (optional)") | |
if st.button("Analyze"): | |
sample_analyze_entities(user_input, your_query) | |